
Erasmus University Rotterdam

Master’s Thesis
Computational Economics

Web-shop Order Prediction Using
Machine Learning

Author:

Walter Hop

Student number:

316457

Supervisor:

Dr. Michel van de Velden

Co-reader:

Pieter Schoonees MSc

July 23, 2013

Summary

In the prudsys Data Mining Cup 2013, teams build classifiers to predict whether

a web-shop user session will end in an order.

We apply a knowledge discovery framework, review various approaches

for dealing with missing data, evaluate prediction models, and finally build a

stacking classifier consisting of support vector machine, Random Forest and

neural network base classifiers using the R environment.

Of the base classifiers, Random Forest provided the highest accuracy, followed

by support vector machines. The neural network did not perform adequately.

Besides having a high test accuracy of 90.3% on our prediction problem, Random

Forest is shown to have many other desirable properties.

A custom implementation of stacked generalization proved to bring no accu-

racy advantages over Random Forest on our data set. This was true for a stacking

classifier based on an ordinary least squares linear model, as well as one based

on support vector regression.

In handling of missing data, we found no empirical differences in classifier

accuracy when using various imputation methods.

Our classifier’s prediction accuracy ranked 27th out of 63 competitors in the

DMC competition. We assess the results in regards to other work, and discuss

avenues and recommendations for future studies.

Keywords

machine learning; e-commerce; imputation; stacked generalization; Random

Forest; support vector machines; neural networks

1

Contents

1 Research problem 5

1.1 Introduction . 5

1.2 Problem definition . 6

1.3 Research questions . 8

2 Methods 9

2.1 Knowledge discovery framework 9

2.2 Overview of study design . 10

2.3 Input data . 12

2.4 Preprocessing . 14

2.4.1 Excluding missing values 14

2.4.2 Mean imputation . 14

2.4.3 Predictive imputation . 15

2.4.4 Unique-value imputation 15

2.4.5 Imputation selection . 16

2.5 Data mining . 17

2.5.1 Model evaluation . 17

Overfitting and underfitting 17

Estimating the test error 18

Tuning a model . 19

2.5.2 Random Forest . 20

Decision trees . 20

The Random Forest ensemble 21

Out-of-bag data . 23

Hyperparameters . 24

2.5.3 Support vector machines 25

Maximum-margin hyperplane 25

2

Nonseparable problems 27

Nonlinear problems . 27

Hyperparameters . 30

2.5.4 Neural networks . 31

Neurons and weights . 31

Training a network . 32

Variance of results . 34

Hyperparameters . 36

2.5.5 Meta-classification . 36

Combining classifiers . 36

The level-1 data set . 37

Stacking with multi-response regression 38

2.6 Postprocessing . 40

3 Results 42

3.1 Software . 42

3.2 Feature extraction . 44

3.3 Missing values . 46

3.3.1 Excluding missing values 47

3.3.2 Imputation methods . 47

3.3.3 Evaluation . 48

3.3.4 Selection . 49

3.4 Model training and evaluation . 51

3.4.1 Random Forest . 52

Tuning . 52

Out-of-bag measures . 52

Accuracy details . 54

3.4.2 Support vector machine 55

Tuning . 55

Grid tuning . 56

Sigma-optimized tuning 57

3.4.3 Neural network . 58

Tuning . 58

Interpretation diagram . 60

3

3.4.4 Model evaluation . 60

3.5 Meta-classifier . 62

3.5.1 Overview . 62

3.5.2 SVM probability correction 63

3.5.3 Ordinary least squares linear regression 65

3.5.4 Support vector regression 66

3.5.5 Evaluation issues . 66

3.6 Transformation . 67

3.7 Final prediction . 69

3.8 DMC evaluation . 70

4 Discussion 72

4.1 Principal findings . 72

4.2 Context . 75

4.3 Interpretation . 77

4.4 Limitations . 79

4.5 Future work . 80

5 Conclusions 82

Bibliography 85

Appendix 89

A.1 Random Forest tuning table . 89

A.2 Bootstrapped SVM tuning table 90

A.3 Sigma-optimized SVM tuning table 90

A.4 Neural network tuning table . 91

A.5 Linear SVM meta-classifier tuning table 92

A.6 Team rankings of DMC competition 93

4

Chapter 1

Research problem

1.1 Introduction

In recent years, the shift in commerce from retail to web-shops has accelerated,

with web-shops displacing physical stores quickly. E-commerce provides mer-

chants with new opportunities for reaching out to prospective buyers at a large

scale. E-commerce also brings new challenges. Relationships between merchant

and consumer have become more volatile. No longer does a merchant know

the customer, their wishes and intents directly. It is therefore much harder to

incentivize customers through a personalized offering.

To mitigate this problem, a merchant is able to customize the content of their

web-shop with respect to the visitor. Like never before, customers are leaving

extensive trails of their online behavior. Large amounts of data are collected

during each visit to a web-shop. This data can be linked to user information from

a CRM database and common behavioral patterns of earlier visitors.

There is an obvious role for machine learning algorithms in analyzing the

large amounts of data, picking useful attributes, and predicting future behavior

of a visitor. When applied properly, personalized e-commerce may give a mer-

chant a significant competitive advantage by increasing turnover and customer

satisfaction.

The prudsys Data Mining Cup (DMC) competition [1] is a yearly competition,

in which student teams work on a data mining problem. The competition of

2013 is centered around log data from a web-shop. The job of the data mining

teams is to predict the probability that a certain visitor will place an order, based

on user information and data collected during the visit.

5

Order prediction techniques can be used to personalize the experience of a

web-shop. For instance, if a visitor is predicted to have a low order probability,

the visitor might be motivated to buy by offering discount coupons. Visitors

with a high order probability on the other hand, might be induced to purchase

additional or more expensive products by advertising recommended products or

product combinations. [2]

Currently, advanced machine learning capabilities for e-commerce are mostly

restricted to expensive proprietary systems. This makes it interesting to build

state-of-the-art prediction systems using open source components. The competi-

tion of the DMC allows for a quantitative evaluation of the solutions submitted by

many university teams. Dissemination of the winning solutions will stimulate the

development and use of machine learning solutions in e-commerce enterprises

of all sizes.

1.2 Problem definition

The problem of the prudsys Data Mining Cup (DMC) competition in 2013 [1]

is centered around log data from a web-shop. This data has been collected

from actual web-shop visitors. Some of these visitors have placed an order at

the web-shop; some have not. The goal is to learn from this data, and predict

the probability that a new visitor will place an order. The size of the data is

such (over 400,000 observations) that manual review is not realistic, requiring

statistical or machine learning algorithms to summarize it.

When a user visits the web-shop, he or she may perform various transactions,

each transaction becoming an observation in the data set. A transaction is formed

by a series of page views and visitor actions during a time frame. Aggregated data

for each transaction is available, such as: number of products clicked, highest

price of products clicked, availability of the products, day and time, et cetera.

Furthermore, the transaction is linked to some user data, such as customer age,

type (business or consumer), gender, account lifetime, rating, and number of

past payments.

One or more of these transactions by a unique user form a session. A session

may, or may not, end in the purchase of a product. The core of the competition

6

is to build a prediction model that is able to predict whether or not an order will

be placed in the session, based on transaction data. The output of a session’s

prediction should be an estimate of the order probability as a number between 0

and 1. The session is only described by its various transactions occurring over

time, which means that part of the task is to aggregate the transaction data into

useful session information.

In many analyses of real-life data sets, quality and completeness of the data

constitutes a serious challenge. Collected data may come from various sources

and may be incomplete. For instance, web-shop visitors may not have a registered

user account, or may not have indicated certain preferences. As a result, the

DMC transaction data contains many missing values, which requires a resolution

strategy that introduces the lowest inaccuracies.

The DMC challenge is broken down into two tasks. We have provided a

solution for the first task, which is an offline classification problem. For this

task, DMC supplies a training set (with order outcomes) and a test set (without

outcomes). The solution must be built using the training set, and is then executed

on the test set to generate predictions. The algorithm may take a long time to

calculate a prediction; therefore, competitors can use a multitude of complex

methods. The second task is an online classification task, where a Java-based

agent is to be built that provides a stream of classifications in a real-time scenario

with very limited computing resources. Due to time constraints, we did not

pursue the online task at this time.

The offline task is to be solved by creating a ‘state-of-the-art’ prediction

system, or classifier, that can utilize large amounts of computational resources

to make the best possible predictions. There are various prediction algorithms,

or prediction models, that can be used for such a task. While some types of

models generally give a good prediction accuracy, it is hard to determine in

advance which type of model will perform well on a given data set. Fortunately,

computing advances make it possible to create and evaluate various algorithms

on a data set. A metric is necessary to estimate the accuracy of these models.

This metric can be used to select the best performing model.

Each of these algorithms however, may have inherent biases and imper-

fections; for instance, some models may not be able to accurately recognize

7

high-dimensional patterns in the data. Therefore, it is interesting to investigate

if a classifier can be created that builds on the strengths of diverse models, in

order to generate even more accurate predictions. Such a classifier, which learns

from the output of other classifiers, is called a meta-classifier.

1.3 Research questions

The main question we aim to answer is the following:

• How can we predict the probability that a web-shop visitor will place an

order, based on transaction data?

Subquestions that arise and need to be resolved in order to provide a solution

for this question are:

• How can we create a prediction system using only open-source components,

to extract useful features from web-shop transaction logs, build prediction

models, and generate predictions?

• What is a good strategy to deal with large numbers of missing values in

prediction model training?

• Can we construct a meta-classifier that builds on the output of various

prediction models, in order to make even better predictions?

8

Chapter 2

Methods

2.1 Knowledge discovery framework

This chapter will describe the various steps of the analysis and the techniques

used. We will follow the framework for knowledge discovery in databases (KDD)

tasks described by Tan et al. [3]:

Input data Preprocessing Data mining Postprocessing Information

Figure 2.1: Framework for knowledge discovery in databases

For data mining tasks, the input data is usually large in size, i.e. it consists

of many observations, many variables, or both. The relationships between

observations and attributes are often not known. Sometimes, the data is in a

format that does not immediately yield to numerical analysis, for instance, the

input data might consist of camera images. In most cases, the data in its current

form will not be able to answer the research question.

A preprocessing step readies the raw data for efficient analysis. This step might

include various necessary processes, such as feature extraction, i.e. the generation

of useful continuous or discrete variables from the input; dimensionality reduction,

or the transformation of high-dimensional data into a lower number of new

variables; feature selection, or throwing away uninformative variables to improve

accuracy and performance while retaining others in their original dimensions

and units; normalization, or the transformation of data to zero mean and unit

9

variance for more unbiased analysis; or subsetting. Other useful processes not

mentioned by Tan et al. could be data cleaning, combining data from several

sources, and imputation, the reconstruction of incomplete input data for later

use with numerical or statistical algorithms that require full data matrices.

Data mining can broadly be divided into two categories. One is descriptive

modeling, where the goal is to uncover relationships, patterns, and clusters

present in the data. The other is predictive modeling, where the goal is to predict

some attribute using other attributes. Prediction can either take the form of

classification where an observation is predicted to be a member of two or more

pre-defined sets or classes, or regression where a continuous variable is estimated.

Finally, the results from the data mining step can optionally be postprocessed.

The output is often visualized, interpreted, transformed, or filtered to focus on

areas of interest.

The result of the process is information. The key difference between infor-

mation and raw data is that the information is structured, summarized, and

immediately useful for decision making.

2.2 Overview of study design

This section will broadly describe our study design in terms of the KDD frame-

work. The study is predictive in nature; that is, it will yield a single prediction

for each visitor session, based on a set of features. The predicted attribute is a

binary variable: the visitor is predicted either to place an order, or place no order.

Thus, the task is a binary classification problem.

The main structure of the process is presented in Figure 2.2. This section

briefly lists the various steps taken:

• Input data: The raw transaction data are collected and parsed, resulting

in a training set (data and their observed outcomes: order or no order)

and a test set for which the outcomes are not known.

• Feature extraction: The transaction data is aggregated into session data,

creating a number of possibly informative features, i.e. variables describing

the session. These variables are used for building prediction models and

generating predictions.

10

Feature extraction

Imputation

Training set

Train SVM Train neural network Train Random Forest

Train meta-classifier

Evaluation

Test set

Prediction

Evaluation Evaluation

Feature extraction

Imputation

Transformation

Prediction Prediction Prediction

Final prediction

Input data

Preprocessing

Data mining

Postprocessing

Information

Figure 2.2: Detailed analysis process

11

• Imputation: Incomplete observations, for which not all features are

known, are processed to create full data matrices amenable to further

analysis.

• Training: The imputed training set is used as input for various prediction

algorithms, to create various prediction models or classifiers.

• Evaluation: The expected accuracy of the models is estimated. This

estimation is used to tune the models for the highest possible accuracy.

• Prediction: The models are executed on the preprocessed test set, yielding

a prediction for every session in the test set.

• Meta-classifier training: We attempt to improve on the individual models

by building a meta-classifier that uses the output of component models as

its input.

• Meta-classifier prediction: The meta-classifier is executed on the test set,

yielding final predictions.

• Transformation: The prediction output is transformed into a format that

more optimally resolves the stated optimization goal.

• Final prediction: The produced information resolves the original predic-

tion problem.

Process steps and algorithms requiring further introduction are extensively

described in the following sections.

2.3 Input data

One visit by a user to the web-shop is called a session. During this session, the

user might click on various products and possibly add these to their shopping

basket. Finally, the user may choose to order some products from the web shop.

Each session is divided into one or more transactions. The data about these

transactions is provided by DMC [2]. We list the variables given in Table 2.1. For

each variable, we provide the description, range, and whether the column can

have missing values (NA or Not Available).

12

Variable Description Values NAs?

sessionNo* Running number of the session int no

startHour* Hour in which session has begun 0–23 no

startWeekday* Day of week in which session has begun (Mon–Sun) 1–7 no

duration Time in seconds passed since start of session float no

cCount Number of the products clicked on int no

cMinPrice Lowest price of a product clicked on float yes

cMaxPrice Highest price of a product clicked on float yes

cSumPrice Sum of the prices of all products clicked on float yes

bCount Number of the products put in shopping basket int no

bMinPrice Lowest price of a product put in shopping basket float yes

bMaxPrice Highest price of a product put in shopping basket float yes

bSumPrice Sum of the prices of all products put in basket float yes

bStep Current purchase processing step 1–5 yes

onlineStatus Is the customer on-line? y, n yes

availability Delivery availability of the product(s) string yes

customerID* Customer number string yes

maxVal* Maximum admissible purchase price for the customer int yes

customerScore* Customer rating from the point of view of the shop int yes

accountLifetime* Lifetime of the customer account in months int yes

payments* Number of payments made by the customer in the past int yes

age* Age of the customer int yes

address* Company/Gender (1=Mr, 2=Mrs, 3=Company) 1–3 yes

lastOrder* Time in days passed since the last order int yes

order* Did the customer order a product in this session? y, n no

Table 2.1: Input variables describing a web-shop transaction. [2] Each transaction

is part of a session, identified by sessionNo. Variables marked with * are constant

throughout all transactions of a single session. Numbers are given as integers

(int) or floating point values (float).

13

2.4 Preprocessing

At the end of preprocessing, we will choose an approach to deal with missing

values in the data. There are many possible strategies to handle missing values,

but they may differ in the quality of the resulting data.

2.4.1 Excluding missing values

A simple way to handle missing values during classifier training is to disregard

any incomplete observations and only include the subset of complete examples

in the model. When encountering missing values in a test observation during

prediction, one might produce a ‘default prediction’, such as a predicted order

probability of p = 0.5 or the expected probability E[p] as learned from the

training set.

This approach might be interesting in cases where the data is plentiful and

missing values appear only in a reasonably small fraction of the observations.

However, the approach assumes that the occurrence of missing values itself is

not correlated with the outcome. If there is a strong correlation, the subset of

remaining training data will not be representative, and the model may perform

badly.

2.4.2 Mean imputation

During imputation, each missing value is replaced by a discrete or continuous

value. An important advantage of imputation over missing value exclusion is that

no subsetting takes place, which allows all observations to be used for analysis.

Mean imputation is a simple procedure which for every variable determines

the mean (or for categorical variables, the mode) across all training observations,

and substitutes any missing values with this value. For instance, if the price of a

product viewed is unknown, the average product price can be assumed.

The mean-value approach may be attractive if the resulting data set is used

for calculations. However, replacing many missing values by any single estimate

might affect the structure of the data, as it could create a cluster of observations

around the imputed value. Imputing the mean may also create the appearance

14

of a stronger relationship with other variables than is warranted, though this

may not necessarily be a problem for our specific application.

2.4.3 Predictive imputation

In predictive imputation models, a missing value is predicted using the other

variables as predictors. For every feature that has missing values, a prediction

model is created. As a prediction algorithm, we may use any model, such as the

models described in section 2.5. (Note that strictly speaking, taking the mean of

a variable may also be construed as a predictive operation, but for our study we

will treat it separately.)

The subset of observations that have an actual value for the variable are used

as the training set. After model training, predictions are generated for all the

observations that have a missing value for the variable.

For many purposes, prediction may be a more useful choice than the often-

used mean-value imputation, as it produces a distinct ‘plausible’ value for every

observation, which may be more accurate than assuming the mean. A drawback

of predictive imputation however is the added computational effort required to

fit prediction models for every variable.

2.4.4 Unique-value imputation

A technique that seems to be rarely used is unique-value imputation, where

missing values are simply replaced by a value that is unique for that data set.

For instance, for categorical variables, we could create a new dummy category

‘missing’, and for numerical variables, we could insert a unique number. To give

an example, we might either replace all missing numbers with the value –1, or

we might give all missing values distinct values, such as –1, –2, et cetera.

This approach would be highly inappropriate if the result would be used in

calculations, for instance for summarizing the data. The imputed values distort

the distributions of the variable and have no semantic value in the problem

domain. For instance, imputing a ‘product price’ variable with –1 makes it hard

to later calculate the mean product price. It is unknown if this disadvantage of

unique-value imputation is relevant to our main prediction problem. After all,

we are only interested in predicting order probabilities. The actual values in the

15

training set are not directly relevant to us, as long as our classifier’s prediction

accuracy is not impaired. This can be determined empirically.

In our main problem, we use a prediction model to estimate the response

variable, using all variables as predictors. This raises the question if the added

effort of mean or predictive imputation is warranted at all. Saar-Tschehansky and

Provost [4] discuss the concept of imputability: in a highly imputable variable,

its missing values can be predicted well from other variables. If the imputability

of a variable is high, and the value is a significant predictor for the outcome, it

might follow that a classifier would likely be able to predict the response from

the other variables directly without the help of an intermediate imputation step.

If the imputability of the variable is low, apparently it is not strongly correlated

with other variables, and imputation attempts might not be fruitful in any case.

We might be interested in unique-value imputation for various reasons. First,

imputation methods which replace a missing value by the mean or another plau-

sible number could destroy useful information. After applying mean imputation

or predictive imputation, it is no longer known if the value was originally miss-

ing, which might actually be relevant. Second, imputing with a simple unique

value is a very fast procedure, comparable to mean imputation, but retaining the

‘missingness’ of an observation’s variables.

2.4.5 Imputation selection

For time-saving purposes, we prefer to choose a single imputation approach for

the remainder of the analysis. To select the most appropriate imputation method,

we will first execute all viable imputation algorithms on the data set. We will

then train classifiers on each of the imputed training sets.

We will rank the imputation methods according to the estimated accuracy of

the resulting classifiers. In this way, we will hopefully obtain a good estimate of

their usefulness for our problem. The best imputation method will be selected

for the remainder of the analysis.

See section 3.3 for the results of the various imputation approaches and the

selection process.

16

2.5 Data mining

After selecting an imputation approach, we can use the imputed training set

to train prediction models. In the next sections, we will discuss the prediction

models used, as well as the methods used to compare and combine them.

2.5.1 Model evaluation

Overfitting and underfitting

A data analyst has a large number of prediction models at their disposal. Each

type of prediction model may have imperfections and biases, and the relative

accuracies of the model types may vary based on the data set at hand. We will use

various prediction models which are all based on vastly different mathematical

and statistical methods. Therefore, we must have a way to evaluate their relative

accuracies on our data set empirically.

Since we have access to outcomes of only the training set, we can only

use the training set to evaluate models. The best model is not necessarily the

model that has the best classification accuracy on the training set itself — or the

lowest training error. As an extreme example, a naive model could just store all

training examples in memory and perform a simple lookup on prediction of a test

observation. This model would have a 100% accuracy on the training set, but it

would be useless in practice, since it would fail on unseen observations having

just slight differences. Thus, this naive model would have a high test error.

What we are looking for is a prediction model that generalizes well to new

observations, minimizing the test error. A model generalizes well if it recognizes

and remembers the most significant patterns in the training set, without getting

disturbed by insignificant noise and randomness in the data.

Good generalization can be viewed as finding the balance between two

pathological extremes. One extreme is overfitting, i.e. optimizing the model

too far on the training set with its noise and random patterns. As our example

of the ‘naive model’ shows, an overfit model has a deceivingly low training

error, and would likely have a higher error when making predictions on unseen

observations. At the other end, there is underfitting, where the model contains

17

too little information about underlying patterns to make correct predictions. [3:

4.4]

Estimating the test error

We must optimize, or tune, each prediction model for the best generalization

capability, or the lowest test error. There are various techniques to assess this

model property. Subsampling methods, such as cross-validation and bootstrapping

are often used for this. The general idea of subsampling methods is that a model

is trained on only a subset of the training set. The remainder of the data can

then be used to test the model.

In k-fold cross-validation, the training set is split into k subsets which should

be roughly of equal size. For each group or fold, the model is trained using the

complement of the fold and then tested on the fold itself. For example, in 10-fold

cross-validation, the model is trained and tested ten times, each using a different

90-percent chunk as a training set and the 10-percent held-out data as a test set.

Each of these runs produces a test error, which functions as a fair estimate of how

the particular model with this settings would generalize to unseen observations.

The average of these test errors, the cross-validated error estimate, as well as its

variance over the different folds, are noted. After the k training subsets have all

been tested, the model is trained on the full training set.

Bootstrapping follows a similar procedure. In bootstrapping, a training subset

is created by taking a bootstrap sample, i.e. observations are drawn from the

original training set with replacement. This leads to a training subset that can

potentially contain multiple copies of observations. The full data set is then

used as a test set, leading to a test error estimate. This procedure is then

repeated a number of times; for instance 25 times, which is the default in the R

caret library. [5] The duplication of observations in training subsets can lead to

low error estimates. There are remedies for this, such as the .632+ bootstrap,

which applies a correction. An advantage of the bootstrap is that it produces

smoother estimates, i.e. the estimates have less variability when compared to

cross-validation. [6]

For most purposes, bootstrapping and cross-validation produce comparable

results, however we choose to perform cross-validation, as the bootstrap estimate

18

can break down in some overfit situations [7: 7.11], and cross-validation is a

more simple procedure to implement.

It is important to realize that these techniques cannot conclusively determine

the value of the test error, since that would require access to the actual classi-

fications of the test set, while only the training set is available. However, they

can provide an estimate of the expected test error. [7: 7.12] While this is the best

estimate we can make, we must remain vigilant for any surprises that may arise

in practice.

Tuning a model

For each model, there are one or more hyperparameters, i.e. parameters on

model level, that affect the internal structure of the model and the way it is

trained. For instance, in a neural network, we can choose the number of internal

nodes. These hyperparameters often affect the accuracy of the model; so, we

must search for the optimal set of hyperparameters. We can do this by training

multiple models and comparing their cross-validated error estimates. This is

called tuning the model or tuning the model parameters.

For the DMC problem, we select the best model by minimizing two distinct

error estimates: first, the default binary test error when giving binary class

predictions (i.e. only ‘order’ or ‘no order’); second, the DMC test error which uses

an error function based on predicted probabilities as specified by DMC [2] and

as given in Equation 2.1. By considering the linear difference between observed

outcome (a number 0 or 1) and the predicted probability, the DMC error takes

into account that we can submit as predictions a probability that an order will be

placed, i.e. any value from 0 to 1.

errDMC =
∑
i

|orderi − predictioni | (2.1)

Note that the DMC error is a sum of errors for all observations; therefore

it also depends on the number of observations. For classifiers generating only

binary predictions, the DMC error is the total number of errors on all test

observations. We will provide both binary and DMC error where appropriate.

Usually, accuracies are given as fractional values between 0 and 1. To make

meaningful comparisons between the two error estimates, we define the DMC

19

accuracy measure so that, for instance, a mean errDMC per observation of 0.3

will lead to an accDMC of 0.7:

accDMC =
n− errDMC

n
(2.2)

With the evaluation methods outlined, we will now discuss the prediction

models used. For the results of model evaluation when applied to the various

models, see section 3.4.4.

2.5.2 Random Forest

Random Forest is a popular and versatile prediction model. The Random Forest

algorithm is based on decision trees. A decision tree is an older prediction model.

To understand Random Forest, we must first cover decision trees.

Decision trees

A decision tree is created from training data by iteratively splitting the training

observations into subgroups or tree branches. For each internal tree node, a

split condition is created on the value of a feature (for instance age > 50). The

algorithm tries to find the split that creates the most ‘pure’ subdivisions of the

data, i.e. the split leads to subgroups that best differentiate the observations into

classes. [3: 4.3.2] There are many algorithms for growing a decision tree, such

as ID3, C4.5, C5.0, CART, and MARS. [7: 9.2]

We will illustrate the outcome by building a decision tree using the R tree

package [8]. As a training set, we use Fisher’s well-known Iris data set [9], which

contains measurements on various Iris flowers, as well as their species (setosa,

versicolor, or virginica). For clarity and easier plotting, we will only use two

features present in the data set: the petal length and petal width. We will use

these features to predict a flower’s species.

As can be seen in Figure 2.3, the decision tree algorithm produces a model

for the data that is simple and easy to interpret. Making a prediction for a new

observation from the model is done by starting at the root of the tree, then

iteratively moving down the branch that matches the features of the observation.

Ultimately, we end up at a single leaf node of the tree. The leaf node is labeled

with the class that we will predict.

20

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95 Petal.Length < 4.95

setosa

versicolor virginica virginica virginica

Iris decision tree

Figure 2.3: A single decision tree for the well-known Iris data. The features

‘petal length’ and ‘petal width’ are used to predict the species of an Iris flower.

The simplicity of a decision tree also brings disadvantages. A single decision

tree is not useful for modeling complex patterns, since the partitions created by

the tree splits are always parallel to the axes in feature space. An example of this

is shown by plotting the decision tree’s splits in Figure 2.4. The decision tree

functions well on the Iris data, as its classes are separated by the orthogonal lines

very well, but this does not hold for many other data sets. Decision trees are also

known to be unstable, as they are sensitive to noise in the data. [7: 15.2] This

means that small, insignificant changes in the training data can lead to different

decision trees and prediction results, which is undesirable.

The Random Forest ensemble

The Random Forest approach improves on the stability and accuracy of decision

trees by embedding a large number of decision trees in a so-called ensemble

classifier. An example Random Forest, for instance, might contain 500 decision

trees. Every decision tree is trained on a bootstrap sample from the training set.

(Review section 2.5.1 for details on bootstrapping.) A prediction is obtained by

having all decision trees create a prediction, and taking the average or a majority

21

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Iris partition plot

Petal length

P
et

al
 w

id
th

setosa

versicolor virginica

virginica virginica

Figure 2.4: Partition plot for the Iris decision tree from Figure 2.3. Observa-

tions are plotted as points. Actual classes: red circles: setosa, green triangles:

versicolor, blue crosses: virginica. The tree model is superimposed. Each split,

or internal tree node, corresponds to a horizontal or vertical line in feature

space. These partition lines form the decision boundaries. Predicted species are

mentioned in text within their boundaries.

vote. Applying this procedure to decision models is called bagging (short for

bootstrap aggregating). It can lead to a higher stability and improved accuracy. [7:

8.7.1]

Random Forest further improves on bagging by ‘de-correlating’ the trees. This

is accomplished by considering only a small, random, subset of features in each

tree split. [7: 15.2] If there are many features in the data set, this constraint

ensures that individual decision trees look vastly different from each other. This

brings an accuracy improvement which compares favorably to boosting. [10] In

boosting, various individual models are also used, but the contributions of models

22

and training observations are weighted iteratively, in order to improve accuracy

of the ensemble. [7: 10.1] Boosting, while powerful, can be a computationally

expensive procedure. Random Forest on the other hand is much faster, with

comparable accuracy. The random feature selection also makes Random Forest

well suited for data sets with many features and missing values. [10]

The algorithm for creating a Random Forest as used in the R randomForest

package [11] is implemented as follows. A predefined number of decision trees

is trained. For every tree, a bootstrap sample is taken from the training set. This

tree is then trained on the bootstrap sample, choosing at every split only from a

fixed number of randomly chosen features. Predictions can be made from the

Random Forest by feeding a new test observation to all individual decision trees

and then averaging their predictions or taking a majority vote.

Out-of-bag data

As each individual tree is trained only on a bootstrapped subset of the training

data, a part of the original training data is held out for that particular tree. This

is called the ‘out-of-bag data’. [10] As each bootstrap sample contains duplicate

observations, many training observations remain unused in that sample, so each

training observation has a chance of around 36% to be part of the out-of-bag

data for a certain tree. [11]

Random Forest uses the out-of-bag data to compute two measures which

make it very fast for practical analysis. The first measure is the out-of-bag error.

The out-of-bag error for a single tree is constructed after training of a tree by

feeding all out-of-bag data to the tree for prediction, and recording the mean

error between the predicted outcomes and actual outcomes. This error is then

averaged over all decision trees. The out-of-bag error provides a quick estimate

for the test error, without the computational effort of cross-validation.

The second internal measure provided by out-of-bag data is the variable im-

portance of each feature. In Random Forests, there are many possible algorithms

for calculating this measure. [12] It is derived in a similar way to the out-of-bag

error. In one scheme, the importance of a feature is determined by first randomly

permuting the out-of-bag data for that single feature, then generating predictions

with the permuted data, and finally recording the mean decrease in accuracy when

23

comparing the normal out-of-bag error and the permuted out-of-bag error. [10]

In the permuted data set, the tested variable is essentially random noise, so the

absence of its relationship with the outcome provides a good estimate for the

contribution of that variable to successful prediction. In other models, feature

importance ranking is usually an expensive process, often done by step-wise

feature selection and repeated re-training of the complete model. Random Forest

provides this information without that large computational cost.

However, Random Forest importance measures cannot always be relied

upon if features vary strongly in their scale of measurement or number of

categories. This can lead to cases where importance measures are biased and

have unnecessarily high variance. Strobl et al. [12] note that this problem is

inherent to decision trees and bootstrapping, and instead suggest changes to tree

building algorithms and the subsampling method.

Note also that Random Forest only looks at univariate (single-variable) impor-

tance. It does not take into account multivariate patterns, such as variables which

are collinear or otherwise highly correlated. Random Forest considers a random

subset of variables for each tree split, and thus variables behaving similarly might

all be used often in tree splits and thus jointly receive a high importance estimate,

while for analysis some of the variables may still be redundant.

Hyperparameters

It has been suggested that Random Forests do not suffer from overfitting. [10]

While this is true for many data sets, there are some cases where overfitting can

happen [13], so tuning of the model for best generalization capability is advised.

A Random Forest has only few hyperparameters to be defined, which makes this

process relatively fast.

One hyperparameter, the number of features considered randomly at each

tree split, often called mtry , must be selected before training starts. The other

hyperparameter, the number of trees or ntree , can be set to an arbitrary large

value such as 500, since it has no local optimum: at some point, the accuracy

will simply no longer increase by adding more trees.

Random Forest accuracy is affected by two properties: a higher correlation

between any two trees in the forest increases the error rate; and a higher strength

24

(or accuracy) of individual trees in the forest decreases the error rate. mtry

affects both of these properties: a lower value of mtry lowers both correlation

and strength, and a higher value of mtry raises correlation and strength. [10]

The competing forces of correlation and strength affect the test error inversely.

Therefore, we must search for the optimal test error by varying mtry . We train

Random Forests on various values of mtry , and compare the estimated test errors

of all Random Forests using the out-of-bag or cross-validated error estimates.

For the results of Random Forest training and tuning on our data set, see

section 3.4.1.

2.5.3 Support vector machines

Support vector machines (SVMs) are a family of powerful prediction models

based on statistical learning theory. SVMs are suitable for recognizing complex

patterns in high-dimensional feature sets.

Maximum-margin hyperplane

A support vector machine divides the training set’s observations into two groups

by finding a separating hyperplane between the groups. Unlike a decision tree,

where each split adds a new hyperplane that divides the remainder of feature

space (recall Figure 2.4), the SVM yields only one single hyperplane. In a

two-dimensional data set, this hyperplane can simply be a line that divides two

clusters of data. (An SVM can also find more complex separation boundaries,

which we will see shortly.)

In many cases, there are infinitely many possible hyperplanes that separate

two classes. However, in contrast to most other models, an SVM always finds

the maximum-margin hyperplane. This is the separating hyperplane that has

the largest distance to any data point in the training set. This is illustrated in

Figure 2.5 by line B2, which has a larger margin than the other two lines.

All separating hyperplanes produce the same training error, meaning they

separate the same points from the training set correctly. Choosing the maximum-

margin hyperplane however tends to create a better generalizing classifier, and

therefore a lower test error. If the margin is small, it follows that a small change to

a data point may easily cause it to move over to the other side of the hyperplane,

25

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Separating hyperplanes

x1

x 2
B1 B2

B3

Figure 2.5: Many hyperplanes separate these two classes. The maximum-margin

hyperplane (shown as B2) has the largest distance to any point.

causing a change in the model’s prediction. A small margin makes a classifier

prone to overfitting, and causes it to generalize poorly to new data points. [3:

5.5.1]

The data points which lie nearest to the hyperplane, on the edge of the

margins, are called the support vectors. A model created by an SVM can be

described fully by its support vectors. The number of support vectors in the

model is a measure for the complexity of the decision surface.

Finding the maximum-margin hyperplane is a minimization problem that can

be solved iteratively through numerical methods. This unfortunately is a slow

process if the training set contains a large number of observations (however, the

method is less sensitive to the number of features). Modern SVM implementa-

tions may use varying efficiency optimizations to find a faster solution, [14] so

the computation time also depends on the software used.

With its single hyperplane, an SVM functions as a binary classifier, always

26

dividing observations into two classes. Prediction for an observation can be

performed by calculating on which side of the hyperplane the point lies.

Multi-class prediction is often accomplished by creating an SVM for each pair

of classes in a ‘one-against-one’ fashion (finding the hyperplane that separates

classes ci and cj). Alternatively, a SVM can be created for every class in a

‘one-against-rest’ approach (finding the hyperplane between class ci and its

complement ¬ci). [3: 5.8] The class prediction is then determined by aggregation

of the predictions of all SVMs, for instance by majority voting.

Nonseparable problems

In the case that no hyperplane can be found that correctly separates all training

data points, the data set is called nonseparable. In this case, the SVM algorithm

can still find a good hyperplane with a margin that is somewhat ‘soft’ on both

sides, meaning that it allows for some misclassifications. This is achieved by in-

troducing slack variables into its system of equations. Observations on the wrong

side of the margin are weighted down in order to reduce their influence. [15]

This mechanism is known as the soft-margin approach. [3: 5.5.3]

In this setting, there are now two goals to optimize for: first, the margin must

be maximized, but second, the slack variables should be minimized. If we do not

minimize the slack variables, we might arrive at a wide-margin classifier that

has a high number of misclassifications. The balance is influenced by the cost

parameter C which must be set before SVM training begins.

Nonlinear problems

Many data sets are not linearly separable in their original dimensions of feature

space, as they contain nonlinear patterns. This is illustrated in Figure 2.6(a).

Here we see an example data set that is not linearly separable in its feature

dimensions. There is no straight line that we can possibly draw that would

satisfactorily separate the data, even when allowing for some misclassifications

through a soft margin.

However, if we would transform this data using a transformation function

that maps points with features x1 and x2 to a transformed space with dimensions

x1
2 and x22, we arrive at Figure 2.6(b). It turns out that in fact we can linearly

27

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2

(a) Nonlinear separation in feature space.

●

●

●

●

●

●

●

●

●

●
●

● ●●
●● ●●

0 1 2 3 4

0
1

2
3

4

x1
2

x 22

(b) Linear separation in transformed space.

Figure 2.6: The two-class data set in (a) is not linearly separable in the dimen-

sions of its features x1 and x2. However, a circle defined by x12 + x2
2 = 1 would

separate the classes. If we transform the data set to dimensions x12 and x22 as

illustrated in (b), the data becomes linearly separable in the transformed space.

separate the data in these dimensions.

Nonlinear SVMs can exploit this property. The approach can be thought of

as projecting the original data points into a higher-dimensional space, in order

to find the linear separating hyperplane in that space. Unless the training set

contains contradictions (e.g. two observations with equivalent features, but

different classes), it is always possible to find a linear separation boundary in a

higher dimension.

A question remains what kind of mapping function to use on a certain data

set, in order to ensure that a separating hyperplane can be found. Also, finding

numerical solutions in a very high-dimensional transformed space might look

computationally intractable. However, fortunately it is not necessary for the SVM

to actually carry out a full projection of the training set to a higher-dimensional

space, or actually perform calculations in that higher dimension. To circumvent

projection, SVMs employ a technique which is known as the kernel trick. The

trick depends on a property of the SVM’s numeric optimization process that finds

the maximum-margin hyperplane. This process only requires the dot product of

two data points to be known; besides the dot product, no access to actual values

is necessary. The dot product functions here as a ‘similarity’ metric of two data

28

points. [3: 5.5.4]

We can compute the similarity between two data points in a transformed space

by using a kernel function applied to the data points in original feature space.

The similarity function must be equivalent to computing actual dot products in

the higher-dimensional space. There are various kernel functions available that

satisfy this equivalence.

One of the possible kernel functions is the polynomial kernel. Going back to

the example of Figure 2.6, the polynomial kernel can be an appropriate kernel

function to use. If a SVM would use as its similarity function a quadratic (2-

degree) polynomial kernel function applied to the data points in (a), the SVM

will arrive at a solution that is linearly separable in a quadratic function of the

data points, such as shown in (b). A 2-degree polynomial kernel SVM would

therefore be powerful enough to separate the quadratic pattern in the data set.

Another well-known kernel is the radial basis function (RBF) kernel, which is

equivalent to mapping the data points into an infinite-dimensional space. [16:

15.2.3] A linear hyperplane in infinite-dimensional space can translate to an

extremely complex separation boundary in feature space. Therefore, this is a

very powerful kernel that allows the SVM to generalize highly complex patterns.

However, as kernel functions become more complex, the computation times

of SVM training will increase. So, in large data sets it might be better to use a

relatively simple kernel, such as the linear kernel, which is a 1-degree polynomial

kernel that can be computed relatively quickly. This of course runs the risk that

complex class boundaries can not be separated, resulting in a higher training

error.

We give an example of some typical separation surfaces created by support

vector machines. We train two SVMs on the Iris data set [9]. (For an introduction

of the Iris data, please review section 2.5.2.) We train one SVM using a linear

kernel, one using a radial basis kernel. The results are plotted in Figure 2.7.

The linear kernel produces linear decision boundaries. The radial basis kernel

produces a more rounded boundary between classes ‘versicolor’ and ‘virginica’.

Both kernels seem to provide a good separation for this prediction problem.

29

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

SVM classification plot

Petal.Length

P
et

al
.W

id
th

(a) Linear kernel SVM

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

SVM classification plot

Petal.Length

P
et

al
.W

id
th

(b) Radial basis kernel SVM

Figure 2.7: Prediction plots of two support vector machines trained on the Iris

data set. Data points are colored with their actual class (red: setosa, green:

versicolor, blue: virginica). Support vectors are marked as circles. Predicted

classes are differentiated by background color.

Hyperparameters

We recall that a hyperparameter in soft-margin SVMs is C, or the cost parameter.

This parameter sets the penalty for misclassifications. When C is increased, the

SVM will try harder to prevent misclassified data points. This leads to a smaller

margin [16: 15.2] and a more complex decision boundary [14], which has a

hazard of overfitting. Decreasing C will lead to a smoother boundary as the SVM

becomes lax in preventing misclassifications. At some point, this will lead to

underfitting. Usually, there is an optimum for C.

Another important hyperparameter in nonlinear SVMs is the choice of kernel

function as described in the previous section. Karatzoglou et al. [14] provide

some guidance as to which kernel function is appropriate for a problem: they

advocate the radial basis (RBF) kernel for general purposes, the linear kernel

for large sparse problems such as text mining, the polynomial kernel for image

processing, and the sigmoid kernel as a proxy for neural networks.

Some of these kernel functions have parameters of their own that must be

set before training as well. These parameters influence the kernel function’s

30

dimensionality or shape.

The polynomial kernel function accepts a degree parameter p that affects the

order of the polynomial patterns recognized. If p = 1, the kernel is called a linear

kernel, and its decision surfaces will also be linear in feature space. A large p

allows separating more higher-order polynomial patterns in the data.

The RBF kernel has a γ (gamma) parameter that affects the width of the

kernel. The choice of γ influences the shape that data points form in the

transformed space, and thereby the shape and complexity of the recognizable

decision boundaries in feature space. γ is sometimes called the ‘inverse-width’

parameter. A small γ creates a wide kernel, which will lead to more linear

boundaries, while a large γ creates a narrow kernel that allows for more flexible

boundaries. [17] If the data set is very dense, selecting a narrower kernel

is preferred. If the data set is sparse, a wider kernel generally gives better

results. [18] As is often the case, a highly complex decision boundary can be a

sign of overfitting, where a too simple boundary might hint at underfitting.

The generalization capability of a SVM can be very sensitive with regards

to the choice of C, the kernel function, and the kernel’s parameters. [15] The

optimal choices for C, kernel, and kernel parameters can be determined by

repeatedly training SVM models in various configurations, and selecting the

best performing model through a comparison of their cross-validated accuracy

estimates. (Review section 2.5.1 for details about the cross-validation process.)

The results of the SVM tuning procedure will be described in section 3.4.2.

2.5.4 Neural networks

An artificial neural network, or shorter: neural network, is a parallel computing

device modeled after the structure of biological neural networks, such as found

in the human brain.

Neurons and weights

A neural network consists of many simple processing units, also referred to

as neurons or nodes. Each node combines a number of incoming signals and

produces an outgoing signal. The output of the node is determined by a transfer

function that summarizes the weighted inputs, and an activation function that

31

produces the output value. Often, a node also uses a bias, also called threshold,

which is an incoming signal with a constant value. An activation function often

produces an output signal in the range [0, 1] or [−1, 1]. The output signal might

be an input for another neuron. A schematic diagram of a neuron is presented in

Figure 2.8.

Figure 2.8: Model of a neuron in an artificial neural network. [19] Incoming

input signals are weighted, then summarized through a transfer function. The

resulting net input, as well as the bias (or threshold), are combined through an

activation function.

Signals flow through the network over directed connections between the

nodes. Every connection is associated with a weight value. The weights in the

network can be changed; this allows the network to learn a task gradually.

Usually, when a neural network model is created, the number of nodes and

the connection topology is fixed at construction time, while the weights are

learned during training.

A simple form of neural network is the feed-forward neural network, in which

signals flow only in one direction from an input layer to one or more hidden

layers and then finally to an output layer.

Training a network

A neural network can be used for prediction. For this purpose, a neural network

must be created with each input node corresponding to a feature. In case of

categorical features, their categories can be encoded as integers; alternatively,

it is possible to encode one categorical feature as a series of dummy variables

32

having the value 0 or 1. [3: 5.4.2] Every output node of the network will deliver

a prediction, for instance a class membership probability in the range [0, 1].

An neural interpretation diagram [20] of such a classification network is

given in Figure 2.9. Here, we have trained a neural network on the Iris data

set [9], training it to predict a flower’s species (setosa, versicolor, or virginica)

from the petal length and petal width.

I1

I2

Petal.Length

Petal.Width

H1

H2

H3

H4

O1

O2

O3

setosa

versicolor

virginica

B1 B2

Figure 2.9: A classification network with 4 hidden nodes, trained on two features

of the Iris data set to predict a class. Positive weights are shown in blue; negative

weights are red. Larger absolute weights have thicker lines.

A feed-forward neural network is trained by consecutively offering training

observations to its input layer, one feature corresponding to one input node.

Often, input data is normalized to a range such as [0, 1] or [−1, 1], to conform

the signal to the amplitudes of other signals in the network.

The signal travels through the neural network, modified at each node by the

weights of the node’s incoming connections and its activation function. During

training, the output signals of the network are compared to the actual target

pattern of the training example. The differences between output and actual

values are minimized through numerical methods that minimize error values.

Error values are communicated back from the output layer back to the input

33

layer, gradually adapting the connection weights to minimize the error. The

errors for hidden layers are not directly related to the output; however, their

weights are adapted in proportion to their assumed contribution to the error

in the next layer. [21] This stepwise backward weight adaptation procedure is

called backpropagation.

Variance of results

Learned separation boundaries and accuracies can vary dramatically from one

training attempt to another, even when all parameters and the training data stays

the same. This is caused by the initialization of the weights to random values at

the start of training, so that the optimization problem starts from differing initial

conditions. We illustrate the effect of this randomness by training a number of

identical neural networks on the Iris data and plotting the resulting decision

boundaries. The topology (see Figure 2.9) and hyperparameters of all neural

networks are the same. In Figure 2.10, we show a selection of classifiers and

their widely varying outcomes.

As the figure shows, three out of four networks have achieved reasonable

separation boundaries between the classes. Cases (a) and (c) are somewhat

comparable to the results attained by respectively the linear kernel SVM and

the radial basis kernel SVM in Figure 2.7, although the neural network does not

guarantee the wide margin that is characteristic of SVMs. Case (d) is pathological:

clearly, the neural network has failed to arrive at an acceptable separation. The

areas for versicolor and virginica are not properly detected and generalized.

When inspecting the error values of this network during training, the iterative

error minimization process was shown to be aborted because of insufficient

improvements in the error function, while the error function was still very high.

This demonstrates that neural network training can easily get stuck in a local

minimum, with a dramatic outcome. A possible solution is to train many neural

networks and combine their results through averaging or a meta-classifier (which

we will introduce in section 2.5.5).

During prediction, the neural network simply processes the values offered to

its input layer by consecutively applying its weights and activation functions for

every layer. In this way, it works like a function approximator. A useful property

34

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal length

P
et

al
 w

id
th

(a) Linear boundaries.

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal length

P
et

al
 w

id
th

(b) Complex boundaries with wide margins and

low training error.

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal length

P
et

al
 w

id
th

(c) Complex boundaries with small margins.

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal length

P
et

al
 w

id
th

(d) A pathological outcome.

Figure 2.10: Prediction boundary plots for four neural networks with identical

topologies trained on the same input data. Training observations are plotted as

points (red circles: setosa, green triangles: versicolor; blue crosses: virginica).

Neural network decision boundaries vary heavily between training attempts.

Neural network (d) has failed to correctly learn the prediction task.

35

of neural networks is that they can be trained ‘on-line’ even after initial training,

by offering additional training examples and performing weight adaptation.

Hyperparameters

A neural network has many selectable hyperparameters which influence its

training and operation. A weight decay parameter introduces a penalty for

higher weights, which causes weights to fall down to smaller values during

training. Large weights tend to produce rough output functions. [22] Smooth

and gradually responding outputs are preferred, as the resulting soft decision

boundaries prevent overfitting; however, too much smoothing will increase the

test error rate. The decay parameter can be tuned to determine the optimal

value.

Some other parameters are the choice of transfer function, activation function,

the number of hidden layers (affecting the complexity of possible patterns

learned), the size (number of nodes) in each hidden layer, the initial weights

(usually set to random values), and a learning rate which determines how

quickly weights are adapted to minimize error values. [3: 5.4.2] Many modern

implementations of neural networks use optimized numerical methods which do

not require setting a learning rate.

The results of the neural network model will be presented in section 3.4.3.

2.5.5 Meta-classification

Combining classifiers

Using the methods described in the previous section, we can create diverse

prediction models. It is interesting to investigate if we can combine these models

in order to build upon the relative strengths of each model.

There are many possible strategies for combining prediction models. A simple

approach could be to simply collect all the individual model predictions, and take

a majority vote — or in the case of regression or class probability estimation, take

the mean of the individual model outputs. However, with this strategy, a badly

performing model will have a negative influence on the end result. Majority

voting therefore generally results in a worse accuracy when compared to selecting

36

the best of the original classifiers through cross-validation. [23]

A solution for this problem is stacked generalization or stacking. In stacking, a

new classifier is constructed which learns from the output of base models. The

new classifier is called the meta-classifier or level-1 generalizer, while the original

classifiers are called base classifiers or level-0 generalizers. The level-1 generalizer

is said to deduce (infer) the biases of the level-0 classifiers with respect to a

training set. [24] The resulting stack can make a weighted combination of the

products of base classifiers, and in theory is able to generate better predictions

than the best singular base classifier.

In stacking, first the level-0 classifiers are trained and tuned as described

in the earlier sections. For an ensemble to improve predictions, base classifiers

should provide variation. In our example, we train all the base classifiers on the

same training data, but provide variation through using different model types. In

other cases, variation might be induced by training base classifiers on different

feature subspaces, or even from different data sources.

The level-1 data set

The level-0 classifiers are used to generate class predictions for some training

set. This leads to a new level-1 data set, which in the most simple form contains

just the predictions from the base classifiers, as well as the actual class. A simple

level-1 data set in our case would look like this:

sessionId ĉrf ĉsvm ĉnn c

1 no no yes yes

2 yes no no yes

3 yes yes yes yes

4 no no no no

Table 2.2: Partial example of a level-1 data set. The level-1 data set contains

predicted classes ĉ that were predicted on a training set by level-0 Random

Forest, SVM and neural network level-0 classifiers, as well as the actual classes c

of the training set.

As a training set for this procedure, we can use the same training set used

to train the level-0 classifiers. However, if we do so, we must take precautions.

37

In classifier error estimation (see section 2.5.1), we discussed the importance

of separating the training set and test set for a classifier. If we test a classifier

by predicting on its own training set, we will not get an unbiased estimate

of its accuracy. The same problem holds when creating our level-1 data set:

we may never use a level-0 classifier to predict on its own training set. If we

do, its predictions become overconfident and will not be representative of its

performance on new data. In such a situation, the level-1 classifier cannot

identify its strong and weak areas.

When reusing the level-0 training set, we therefore need to build the level-1

data set by having level-0 classifiers only predict on untrained ‘out-of-sample’

observations. This can be done using a cross-validation procedure. [23,25] With

10-fold cross-validation, the following steps are repeated ten times. (1) Select a

new subset containing 10% of the training set. (2) Train new Random Forest,

SVM, and neural network classifiers on the complement (90%) of the subset,

so that the 10% subset is unseen by the classifiers. (3) Generate predictions on

the held-out 10% subset from the classifiers just trained on its complement, and

store these predictions in the level-1 data set. After this cross-validation loop has

repeated 10 times, the level-1 data set is complete.

The level-1 data set is then used as a training set for a level-1 generalizer.

The level-1 machine learning problem is therefore the prediction of actual classes

from level-0 class predictions.

With the level-1 generalizer being trained and tuned, the stack is complete.

Predictions can be generated from the stack by first feeding an observation

to level-0 classifiers trained on the full training set, then feeding the level-0

predictions to the level-1 generalizer as input data.

Stacking with multi-response regression

There are some choices that affect the performance of a stacking classifier: first,

which attributes to use for the level-1 data set; second, which machine learning

algorithm to use for the level-1 generalizer.

To give an easy introduction, we introduced the concept of a level-1 data

set that only contains class predictions. Ting and Witten [25] suggest that a

better level-1 classifier can be created by using not the class predictions from the

38

level-0 classifiers, but their predicted class membership probabilities in the form of

a real number in [0, 1]. This should provide the level-1 classifier a measure of

how ‘confident’ the level-0 classifiers are in their prediction of each class. Using

such a scheme, the level-1 data set in our case would look like this:

sessionId p̂rf (yes) p̂svm(yes) p̂nn(yes) c = yes

1 0.386 0.352 0.714 1

2 0.622 0.374 0.296 1

3 0.752 0.907 0.742 1

4 0.000 0.006 0.089 0

Table 2.3: Partial example of a level-1 data set with predicted ‘yes’ class member-

ship probabilities from level-0 classifiers, and a class agreement variable which

is 1 if the actual class is ‘yes’, 0 otherwise.

As an algorithm for the level-1 generalizer, it has been suggested [25] that

multi-response linear regression (MLR) performs well. In MLR, a classification

problem with real-valued attributes is transformed into a multi-response re-

gression problem, i.e. a separate regression problem for each class. We fit the

following linear model for each class ci:

p̂stack (ci) = β0 + β1p̂rf (ci) + β2p̂svm(ci) + β3p̂nn(ci) + ε (2.3)

In this model, for a single class ci, the probability or ‘confidence’ outputs

from all base classifiers are weighted to arrive at a pooled probability measure

p̂stack (ci). The level-1 data set is used to estimate the values of all βj , with the

dummy variable c = ci functioning as the response variable as seen in Table 2.3.

The resulting model is easy to interpret manually; βj for j > 0 represents the

contribution of base classifier j to the correct classification of class ci.

For a multi-class problem, the multi-response regression allows the level-1

prediction process to rely for every distinct class on the level-0 classifiers which

are estimated to be most accurate in predicting that particular class. For our

binary classification problem, the level-0 class predictions for ‘yes’ and ‘no’ are

each other’s inverse, so both their fitted gradients will also be the inverse of the

other. Therefore, we need to fit only a single regression model, e.g. for the ‘yes’

class. Nevertheless, we will fit both models in order to check this assumption

39

and verify calculations; we expect the following to hold:

p̂stack (yes) + p̂stack (no) = 1 (2.4)

The stack can generate a prediction by first getting base classifier predictions

for an observation. These probabilities are then fed to the linear models. This

leads to a stack-predicted ‘pooled probability’ value for every class (note that the

predicted attribute in MLR need not be restricted to the [0, 1] range). Prediction

of an observation’s class is done by picking the class ci that receives the highest

value for p̂stack (ci).

We could also attempt fitting a more complex level-1 model. Wolpert, intro-

ducing stacked generalization, has argued that ‘relatively global, smooth’ level-1

models should perform well. [24] If the level-1 model is not sufficiently smooth,

it tends to overfit. [26] A support vector machine-based regression model, as

used by Abbasi et al in fraud detection [27], may function well for this purpose.

Therefore, after fitting a linear model based on ordinary least squares, we will

also fit a model based on support vector regression.

Another possible candidate would be a multinomial logistic model. [24]

However, this model seems to be rarely used in the stacking literature, and

because of time constraints and data transformation requirements, it was not

pursued.

The results from the meta-classifier approach will be discussed in detail in

section 3.5.

2.6 Postprocessing

The goal of the DMC competition is to create a list of predictions on the test set

which minimize the supplied error function defined in Equation 2.1.

We can supply predictions as floating point numbers in the range [0, 1]. This

allows us to submit a list of predicted order probabilities which contain a measure

of ‘confidence’ in the individual prediction results. If our classifier would have

completely no preference for either ‘yes’ or ‘no’, we could submit the predicted

value 0.5, for example.

On the other hand, we might just provide binary classifications (only values

40

0 or 1), by transforming predicted probabilities as:

p̂(yes) < 0.5 → p̂t(yes) = 0

p̂(yes) ≥ 0.5 → p̂t(yes) = 1
(2.5)

There could be other interesting transformation functions, such as functions

that ‘saturate’ the predicted probability towards extremes, for instance:

p̂(yes) < 0.25 → p̂t(yes) = 0

0.25 ≤ p̂(yes) < 0.5 → p̂t(yes) = p̂(yes)

p̂(yes) ≥ 0.75 → p̂t(yes) = 1

(2.6)

We will simulate the effect of the most interesting transformations on the

predicted outputs, producing DMC error value estimates. The transformation

that produces the lowest estimated DMC error rates will be selected through

cross-validation as described in section 2.5.1.

The postprocessing results will be presented in section 3.6.

41

Chapter 3

Results

This chapter lists the results from our analysis. The results are outlined chrono-

logically according to the steps in the analysis process as outlined in Figure 2.1.

3.1 Software

Before reviewing the results of the classifiers, we will first discuss the software

used to create them. We chose to use the statistical programming language R [28].

This open-source program is freely available, is widely used in statistics and

data mining circles, and has many packages available that implement common

machine learning algorithms. It allows — or forces — the user to develop an

analysis pipeline as sequential program code, instead of performing actions in

a graphical user interface. This orientation on code has the advantage that

third parties can easily reproduce research results and re-use methods on new

data sets, just by running the relevant R code. Reproducibility of analyses and

peer review of authors’ programming methods are important current issues in

statistics and science publishing in general. [29]

Since R is extensible, anyone can contribute packages implementing custom

functionality, such as a modern machine learning algorithm. For the user, this is

a strength as well as a problem; for instance, it has led to many authors creating

packages that provide similar functionality — often using different syntax and

with subtle differences — with some of these packages suffering from sparse

documentation, low code quality, or a lack of validation and testing that is

inherent to commercial software. Ultimately this problem can be dealt with by

defensive programming, testing algorithms on small examples, and checking

42

intermediate results rigorously.

During experiments, it was quickly found that computation performance of

many common algorithms was problematic. For instance, a single SVM training

procedure took a day to complete, even though the algorithm was run on a

modern 6-processor 3.2GHz Core i7 system with Windows 8. Unfortunately, it

turned out that most of the canonical R packages, such as the attempted SVM

package e1071 [15], use only one processor. For historical and technical reasons,

most R functions are not parallelized, as the R language and many of its packages

were initially designed in a time where large multi-processor systems were rare.

Cross-validation and model tuning require training a large number of classifier

models, so performance was a serious roadblock. Therefore, much effort was

spent on experimenting with R packages that can make use of multi-core systems

through parallelization. To enable this, the analysis had to be performed on a

Linux system and later a Mac OS X system, since these operating systems offer

standardized interfaces for parallelism which are not available under Windows.

The R package SPRINT [30] appeared to have promise; it implements paral-

lelized versions of various algorithms, such as SVM and Random Forest. However,

it turned out to cause errors on large training sets, which we were unable to

resolve even after communication with the authors. This unfortunately wasted a

lot of effort and time.

Ultimately, a solution with reasonable performance was found by the real-

ization that within a model tuning procedure, the many training procedures are

not dependent on each other. Only at the end of cross-validation, the results of

each individual model training procedure need to be collected and compared.

Therefore, a speedup can also be realized by training the various models in

parallel on different processors.

An R package that provides parallel tuning is caret [5], a utility package for

classification and regression models. This package can coordinate large tuning

jobs by making use of basic parallelism functions. These functions are not part

of standard R, but are provided by the foreach package [31]. There are various

‘back-ends’ for the foreach package, some aimed at large computing clusters,

some aimed at smaller systems; we used the doMC package [32] which spreads

workloads across multiple processors of a single multi-core system. This allowed

43

us to tune complex models within a reasonable time frame.

Another significant advantage of caret is its common interface to a multitude

of classification packages. These packages are vetted carefully, and any differ-

ences in their usage are abstracted away by a common syntax. This decreases

the possibility of human error and allows the user to try various classifiers on a

single data set with small effort. Nevertheless, tuning and cross-validation loops

on a data set of our size are still rather long, varying from multiple hours to days,

so we were not able to include additional classifier models in our search.

3.2 Feature extraction

Preprocessing of data is an important step in the DMC problem. As detailed

in section 1.2, a data set is provided for individual transactions only; however,

we must create predictions for a visitor session, potentially consisting of many

transactions. Therefore we must extract aggregated session features from the

transaction data. For instance, based on exploration of the data, we can extract

features such as:

• total number of transactions in the session;

• average price of products viewed;

• maximum number of products put in the shopping basket.

We can use various aggregation operators, such as count, sum, average, max,

min, range, standard deviation, and gradient. These may reveal sub-patterns

present in the various transactions constituting the session. For instance, a low

range of viewed prices might reveal that a visitor is specifically visiting related

product pages; a positive gradient in the web-shop order steps could hint at an

increasingly confident visitor; a high count of transactions shows that a visitor

spent a long time on the website. Features such as these might be informative to

determine if a visitor is likely to order a product.

We have attempted all reasonable combinations of transaction variables and

aggregation operators. Some of the aggregation functions may not be seman-

tically meaningful in the problem domain (for example taking the minimum

of a series of max viewed price measurements). However, we have tried not to

44

exclude features too quickly. The stated descriptions of the transaction variables

are not always very clear (see section 2.3), so we might miss some information

by being too restrictive in feature extraction.

The number of features generated must of course remain tractable in the

context of machine learning methods. The model fits might later demonstrate

which features are informative and which can be removed from further analysis.

If computation time turns out to be prohibitive, we can choose a limited set of

features to retain.

Some variables in the transaction data are static throughout a session, and

these can be directly used in the session data. The variable customerID is omitted

before training, as it is an identifier and not a proper predictor. Using an identifier

variable to train a classifier might lead to overconfidence in accuracy estimations,

as future observations may be measured on different customers and the model

may then turn out to be ill-optimized for those observations.

The full set of extracted features is given in Table 3.1.

sessionNo countTransact startHour startWeekday

sumDuration minCCount maxCCount avgCCount

minCMinPrice avgCMinPrice maxCMinPrice sdCMinPrice

gradCMinPrice rangeCMinPrice minCMaxPrice avgCMaxPrice

maxCMaxPrice sdCMaxPrice gradCMaxPrice rangeCMaxPrice

minCSumPrice avgCSumPrice maxCSumPrice sdCSumPrice

gradCSumPrice rangeCSumPrice minBCount avgBCount

maxBCount minBMinPrice avgBMinPrice maxBMinPrice

sdBMinPrice gradBMinPrice rangeBMinPrice minBMaxPrice

avgBMaxPrice maxBMaxPrice sdBMaxPrice gradBMaxPrice

rangeBMaxPrice minBSumPrice avgBSumPrice maxBSumPrice

sdBSumPrice gradBSumPrice rangeBSumPrice minBStep

avgBStep maxBStep minOnlineStatus maxOnlineStatus

minAvailability avgAvailability maxAvailability maxVal

customerScore accountLifetime payments age

address lastOrder

Table 3.1: Extracted features for a session. The features are aggregated from

transaction data.

Sometimes, data analysts apply multivariate functions to existing features, for

instance generating products or ratios. This is especially useful if these derived

45

features have a concrete meaning or application in the problem domain. We

have chosen not to generate such derived features, as the added dimensions

would likely increase computation time significantly, while we will choose data

mining algorithms which themselves should be able to deal with multivariate

patterns efficiently.

The reading, parsing, feature extraction and output writing steps were pro-

grammed using version 5.4.13 of the PHP language [33]. While this language is

not used often in data analysis, it is well-suited for creating short data processing

scripts. The feature extractor has the following components:

• Converter: Main program that calls the consecutive steps to convert trans-

action files in DMC format to feature data sets for training and testing.

• FileReader: The DMC file is read and parsed to rows of transaction data.

Categorical string values availability and order are mapped to numerical

values. The DMC value ‘?’ is mapped to the R value NA (Not Available).

• SessionSorter: Each transaction is associated with a single session on its

sessionId variable. The transactions are now chronologically sorted per

session.

• FeatureExtraction: For each session, data from its transactions is aggre-

gated, and static session data is copied.

• FileWriter: The session features are written to a training CSV file and a

test CSV file.

There are 429,014 transactions in the training data file transact train.txt

and 45,069 transactions in the test data file transact class.txt [2]. As multi-

ple transactions are associated with one session, the transaction data represents

50,000 training sessions associated with a known outcome, and 5,111 test

sessions to be used as new input data for predictions.

3.3 Missing values

Exploration showed that many of the available variables in the transaction data

have large occurrences of missing values. This translates similarly to missing

46

values in the extracted session features. In section 2.4, we discussed various

strategies for dealing with missing values in the data set. We execute and

evaluate these strategies.

3.3.1 Excluding missing values

As discussed in section 2.4.1, excluding missing values requires some conditions

to hold: the frequency of missing values should not be too high, and the oc-

currence of missing values should be independent from the outcome. We test

for these conditions by counting the numbers of complete observations, and

breaking down the frequencies of successful orders for all observations and only

the complete observations respectively.

n porder pno−order

Complete training sessions 22,237 0.25 0.75

All training sessions 50,000 0.54 0.46

Table 3.2: The training set contains relatively few fully complete observations.

There appears to be a strong relationship between missing values and outcome.

From Table 3.2, it follows that simply disregarding observations with missing

values is not a viable strategy for this data set. More than half of the observations

contain at least one missing value, and the outcome appears strongly associated

with the presence of missing values. For the complete observations, 25% of

sessions end in an order. For all observations, this is 54%. Therefore, to maintain

a representative training set, we must use the full set of sessions, and choose an

imputation method.

3.3.2 Imputation methods

As we cannot simply exclude incomplete observations, we must explore proper

imputation methods.

Mean imputation (explained in section 2.4.2) is available in the R imputation

package as meanImpute.

Predictive imputation (see section 2.4.3) is available through various functions

in R. We benchmark a predictive imputation method based on boosted trees,

47

available as gbmImpute from the imputation package [34]. This function trains

regression trees for all variables that have missing values. A regression tree

is a decision tree that has a continuous response variable. Boosting is used to

improve accuracy of the prediction. A short description of boosting is given in

section 2.5.2.

Unique-value imputation (described in section 2.4.4) is not available as an R

function. Therefore we created this procedure in custom R code. The uvImpute

function implements the following algorithm: loop through all columns of the

data set, for every column doing the next steps: start with –1 as ‘unique value’;

check if this value exists in the column, and if so, decrease the unique value to

–2, –3, et cetera, until the value does not exist in the column; replace all missing

values by the current unique value. Note that our algorithm is slightly different

from the approach suggested by Sariyar et al. [35] who have imputed a separate

unique value for each observation; their task however was duplicate detection,

in which the expression of inequality between imputed observations is important.

We do not expect this to be necessary for our classifier, but we will adjust the

algorithm if empirical evaluation shows low accuracy.

3.3.3 Evaluation

For an imputation method to be useful, it should retain the information in the

original data set and not obstruct the training process. We evaluate the usefulness

of the various imputation methods by using the resulting data sets to train a

classifier, followed by accuracy estimation of the classifier.

To evaluate classification accuracy for the imputation approaches described,

we have fit Random Forest classifiers using imputed data sets as training sets. We

have fit Random Forest classifiers with default settings, using the randomForest

function from the randomForest R library [11]. As defaults, the library used 500

trees and 7 variables randomly sampled at each split.

Determining the evaluation result quickly was very important, as imputation

was a necessary first step and detailed model evaluation could not start until the

imputation methods were ranked. We used only Random Forest for imputation

selection, since this learning algorithm has few tuning parameters and offers

an embedded ‘out-of-bag’ error estimate (see section 2.5.2). This allowed for

48

very quick training and evaluation without the need for long cross-validation

procedures.

Time constraints forced us to make the assumption that the performance

of Random Forest on the imputed training set serves as a good proxy for the

performance of other classifiers to be constructed later. To check the validity of

this assumption, we have later also trained and tuned support vector machine

classifiers on all imputed training sets, and obtained an accuracy estimate by

10-fold cross-validation. This process took considerably longer, but it could run

concurrently with the rest of the analysis.

To explore changes in data structure due to the various imputation methods,

we have trained decision trees on data sets imputed by the three methods.

The trees were fitted using the R tree package [8]. The results are shown in

Figure 3.1. The trees do not seem to show a lot of structural differences in their

most significant splits, although the unique-value tree is deeper and includes

the ‘age’ feature. Also, the split value for ‘maxBStep’ is influenced somewhat, as

observations with a missing value for this feature have influenced its distribution.

Imputation method Random Forest accuracy SVM accuracy

Mean imputation 0.8933 0.876

Boosted tree imputation 0.8937 0.876

Unique-value imputation 0.8937 0.869

Table 3.3: Accuracy estimates of classifiers trained on data sets imputed by

various methods.

3.3.4 Selection

Table 3.3 interestingly shows that none of the imputation methods appear to

have a significant advantage over the others in terms of classifier accuracy. Mean

imputation appears to have a slight disadvantage for the Random Forest classifier,

with both predictive and unique-value imputation performing having the best

result.

While we did not make any determinations of the variance in estimates, the

Random Forest numbers already appear so similar that we selected the unique-

value imputation approach for its speed, simplicity, and easy adaptability to new

49

|maxBStep < 3.63797

countTransact < 3.5

payments < 11.5

avgBCount < 1.44722

sumDuration < 329.917
no

yes no no yes

yes

Decision tree for mean imputation

(a) Mean imputation

|maxBStep < 3.72853

countTransact < 3.5

payments < 10.0475

avgBCount < 1.44722

sumDuration < 329.917
no

yes no no yes

yes

Decision tree for predictive imputation

(b) Boosted tree imputation

|maxBStep < 3.5

countTransact < 3.5

age < 19.5

avgBStep < 1.06782

avgBCount < 1.44722

sumDuration < 329.917
no

no

no yes

no yes

yes

Decision tree for unique−value imputation

(c) Unique-value imputation

Figure 3.1: Decision trees trained on data sets imputed by various methods.

50

data.

The information obtained from the support vector machine classifiers later

shows that unique-value imputation appears to perform worse on the SVM

classifier, but only slightly. Mean imputation and predictive imputation appear

to have the same accuracy. Again, any differences seem to be so small that they

will not have any significant impact on the general analysis; quite possibly they

are due to random chance. This did not cause us to reconsider the imputation

approach.

3.4 Model training and evaluation

In section 2.5.1, we sketched the process for obtaining accuracy estimates of

various prediction models by training and cross-validation. Model training was

performed using the train function of the caret package [5, 36] in R. This

package provides a standardized interface to create various prediction models,

and offers integrated model tuning by cross-validation. Cross-validation was

performed using the cvTools package [37] and custom code, e.g. for training the

meta-classifier on cross-validation folds and for implementing the specific DMC

accuracy function in Equation 2.2 as an optimization target. We perform DMC

error estimation using a custom function passed to the trainControl parameter

in the caret package.

We perform no feature selection before model training. The number of

features (see Table 3.1) falls easily within the tractable range for prediction

modeling. Even though the required computing time for the cross-validated

training procedures was shown to be rather long (often 8 to 24 hours per model

type), it was acceptable in the context of this project. Feature selection itself

also complicates cross-validation, since selection of the features itself should not

be done globally but be part of the separate cross-validation steps; otherwise, it

can introduce a bias which produces overly optimistic test error estimates. An

extreme example of this is given by Hastie et al. [7: 7.10.2]

51

3.4.1 Random Forest

Tuning

In section 2.5.2, we discussed the use of Random Forest and its hyperparameter

mtry which we need to optimize for best performance. We use the caret train

function with the randomForest package [5,11] to build several models and train

the final model automatically after determining the optimal value for mtry .

For tuning, caret make use of 10-fold cross validation, which provides a good

compromise between computational effort (around 4 hours on a 6-processor

3.2GHz Core i7 system) and reliability of the result (each model is trained on

90% of the training set). The results are presented in Figure 3.2 and tabulated

in Table A.1.

We have attempted 8 values of mtry during tuning. As becomes clear from

the accuracy curve, the optimal cross-validated error estimate is attained at

mtry = 28. With this choice of mtry , the estimated binary classification accuracy

is 0.898 and the estimated DMC accuracy (see Equation 2.2) is 0.796. Note

that the accuracy curve is almost flat around the optimum, demonstrating that

Random Forest appears not very sensitive with regard to the choice of mtry on

this training data. Standard deviations of both accuracy estimates are very low,

giving high confidence in the estimates.

Out-of-bag measures

As discussed, we will not perform feature selection in our analysis. However, for

purposes of model inspection, we will look at the embedded variable importance

measures returned by the Random Forest model (see section 2.5.2 for background

information). A plot of these importance measures is provided in Figure 3.3.

The R randomForest library implements multiple measures; we show the mean

decrease in accuracy after permuting the feature.

We find that some features have relatively high significance, such as maxBStep

(the maximum reached stage in the order process), avgBStep (the average

stage across transactions; similar to maxBStep), countTransact (the number

of transactions), maxAvailability (the maximum value of product availability

indicators – if viewed products are more likely to be in stock the probability of

52

Random Forest tuning results

Randomly Selected Predictors (mtry)

A
cc

ur
ac

y
(C

ro
ss

-V
al

id
at

io
n)

0.885

0.890

0.895

0 10 20 30 40 50 60

Figure 3.2: Results of tuning Random Forest to optimize accuracy using cross-

validation. Although all choices of mtry demonstrate good estimated accuracy,

the optimal estimated accuracy is attained at mtry = 28.

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Variables

M
ea

n
de

cr
ea

se
 in

 a
cc

ur
ac

y
w

he
n

pe
rm

ut
ed

Univariate importance by Random Forest

m
ax
BS
te
p

av
gB
St
ep

co
un
tT
ra
ns
ac
t

m
ax
Av
ai
la
bi
lity

m
ax
O
nl
in
eS
ta
tu
s

av
gA
va
ila
bi
lity

m
in
O
nl
in
eS
ta
tu
s

ad
dr
es
s

m
in
Av
ai
la
bi
lity

m
ax
CS
um
Pr
ice

av
gC
Su
m
Pr
ice

av
gB
Co
un
t

cu
st
om
er
Sc
or
e

su
m
Du
ra
tio
n

m
in
CS
um
Pr
ice

pa
ym
en
ts

la
st
O
rd
er

sd
CS
um
Pr
ice

m
ax
Va
l

sd
BS
um
Pr
ice

m
in
BS
te
p

m
ax
BS
um
Pr
ice

m
ax
CC
ou
nt

av
gB
Su
m
Pr
ice

av
gC
Co
un
t

ac
co
un
tL
ife
tim
e

gr
ad
CS
um
Pr
ice

ag
e

ra
ng
eC
Su
m
Pr
ice

av
gB
M
in
Pr
ice

m
ax
BM
ax
Pr
ice

av
gC
M
ax
Pr
ice

av
gB
M
ax
Pr
ice

m
in
CM
ax
Pr
ice

m
ax
CM
ax
Pr
ice

m
ax
BM
in
Pr
ice

m
in
BM
ax
Pr
ice

m
in
BS
um
Pr
ice

m
in
BM
in
Pr
ice

ra
ng
eB
Su
m
Pr
ice

gr
ad
BS
um
Pr
ice

m
ax
CM
in
Pr
ice

m
ax
BC
ou
nt

sd
BM
in
Pr
ice

av
gC
M
in
Pr
ice

sd
CM
in
Pr
ice

sd
CM
ax
Pr
ice

m
in
CC
ou
nt

m
in
CM
in
Pr
ice

sd
BM
ax
Pr
ice

ra
ng
eB
M
in
Pr
ice

ra
ng
eC
M
in
Pr
ice

gr
ad
CM
in
Pr
ice

gr
ad
BM
in
Pr
ice

ra
ng
eC
M
ax
Pr
ice

ra
ng
eB
M
ax
Pr
ice

m
in
BC
ou
nt

gr
ad
CM
ax
Pr
ice

gr
ad
BM
ax
Pr
ice

st
ar
tW
ee
kd
ay

st
ar
tH
ou
r

Figure 3.3: Random Forest variable importance estimates, sorted from most

important feature to least important feature.

53

ordering is higher) and maxOnlineStatus (indicating whether the customer stays

online).

Interestingly the importance curve only levels off very slowly afterwards.

It appears that most other features are not highly predictive, but still provide

limited information, although it remains unclear at what part variables start to

become just noise.

There are no variables with a negative importance, which would mean that

the Random Forest functions better without including that variable. Since we

are interested in even small accuracy advantages over competitors, we have

retained all variables for analysis and have not retrained the model with a subset

of features.

Accuracy details

Finally, we explore the estimated accuracy of predictions, and look at how ntree ,

the number of trees, influences this accuracy. The Random Forest algorithm

automatically computes ‘out-of-bag’ error estimates for the binary classification

case. A plot of the overall out-of-bag error estimates, error estimates for the

‘order’ class, and error estimates for the ‘no order’ class, is presented in Figure 3.4.

The curve shows that ntree ' 100 already produces good accuracy, but increasing

the number of trees still yields additional accuracy up to ntree ' 300.

As the confusion matrix in Table 3.4 shows, there is a slight difference in

out-of-bag error rates for the two classes, with ‘no order’ observations more likely

to be misclassified at a rate of 11.56% versus 8.48% respectively.

actual class observations no predicted yes predicted out-of-bag error

no 26822 23722 (88.44%) 3100 (11.56%) 11.56%

yes 23178 1965 (8.48%) 21213 (91.52%) 8.48%

Table 3.4: Confusion matrix for out-of-bag predictions.

The optimal overall out-of-bag error estimate is 10.13%, which results in an

expected test error of 1–0.1013 = 0.8987. This number is very similar to the

cross-validated error estimate 0.898 determined during cross-validation tuning.

This demonstrates that the Random Forest out-of-bag error rate is a useful

proxy for the cross-validated error estimate, although of course when only

54

0 100 200 300 400 500

0.
10

0.
12

0.
14

0.
16

0.
18

Out-of-bag error estimate by number of trees

trees

E
rr
or

Figure 3.4: Random Forest out-of-bag error estimates plotted against number of

trees. Black: overall error. Red: ‘no’ error. Green: ‘yes’ error.

depending on the out-of-bag error we do not receive a standard deviation for

the estimate. Further, by using cross-validation on all models, we ensure that

error estimates are comparable across multiple prediction models.

3.4.2 Support vector machine

Tuning

In section 2.5.3, we sketched the support vector machine approach and the

various choices to be made when applying the method. One of these choices is

the kernel function. Ideally, one would try various kernels on a data set. Initial

exploration showed that training an SVM was computationally very expensive,

most likely due to the large number of training observations. Because of time

constraints, we work only with one kernel. We select the radial basis function

(RBF) kernel, which should give good results on a non-sparse data set such as

ours. [14]

As an SVM implementation, we have used the caret train [5] method with

55

the ksvm classifier function from the kernlab package [38]. The RBF kernel was

pre-selected. Tuning was aimed at finding optimal values for cost parameter C

and the RBF kernel’s width parameter γ, which were discussed in section 2.5.3.

Both hyperparameters influence the complexity of the decision surface and thus

strike a balance between overfitting and underfitting.

In the kernlab package, a Gaussian kernel is used as an RBF kernel. For the

Gaussian kernel, a width parameter σ is optimized instead of the inverse-width

γ; these are related by γ = 1/2σ2, so tuning the other formulation provides

equivalent results. In our tuning tables and figures, we will use the σ parameter.

SVM tuning results (Bootstrap)

Cost

A
cc

ur
ac

y
(B

oo
ts

tra
p)

0.65

0.70

0.75

0.80

0.85

0.5 1.0 1.5 2.0

Sigma
0.01 0.1 1 10

Figure 3.5: Results of first SVM tuning attempt using 25-repeated bootstrap.

Grid tuning

We performed an initial SVM tuning. Tuning was performed on a 4 × 4 grid

with 0.25 ≤ C ≤ 2 and 0.01 ≤ σ ≤ 10, with four values attempted for both

parameters. The values attemped are listed in Table A.2. Hyperparameters

selected during this process were C = 1 and σ = 0.1. The results are plotted in

56

Figure 3.5 and tabulated in Table A.2. The estimated accuracy when making bi-

nary class predictions is 0.869; the estimated DMC accuracy based on probability

predictions (see Equation 2.2) is 0.738. We note that the error curve is largely

flat around this value of C.

Due to an unfortunate programming error in calling the trainControl func-

tion, caret’s default setting of 25-times bootstrap resampling as an error estimation

approach was used instead of cross-validation. (See section 2.5.1 for an explana-

tion of this method.)

Due to the multiple-day computation time involved with training 4× 4 SVMs,

we chose not to repeat the full tuning procedure using cross-validation. This

means that test error estimates from this bootstrapped procedure might not be

directly comparable with the other (cross-validated) estimates. However, the

ranking of accuracies from hyperparameter selection within the tuning procedure

should be representative. [7: 7.12]

Sigma-optimized tuning

The 4 × 4 tuning grid used in the first tuning run was still rather coarse out

of necessity due to the long calculations. Therefore, it might not have hit the

exact optimal value for σ. The kernlab library [38] provides a sigest (sigma

estimation) function which estimates a good value for the Gaussian kernel’s σ

(width) parameter for a certain data set.

We recall from section 2.5.3 that the ideal kernel should be wide for a sparse

data set, and narrow for a dense data set. The sigest function estimates the

density of the training data, and determines a good σ accordingly. [38]

The resulting sigest value on the training set was σ = 0.0371. This value

for σ was kept constant, while caret’s default values for the cost parameter

C ∈ {0.25, 0.5, 1} were attempted. This tuning procedure was performed using

10-fold cross-validation, as for the other model types.

In this run, the best accuracy estimate was attained at C = 1. As in the earlier

tuning run, differences between estimates are very small with respect to changes

in C. The variance of the estimates is almost zero. The results are tabulated in

Table A.3.

When we compare Table A.2 and Table A.3, bootstrapping and cross-validation

57

methods produce error estimates which are remarkably similar. The cross-

validated tuning attempt gives C = 1 and σ = 0.0371, with a cross-validated

test accuracy estimate of 0.869 for binary predictions or 0.738 for probability

predictions.

Tuning of the second model was much faster, because of the need for fewer

attempts as the value of σ was held constant. There appears little profit in fitting

a larger range for C. Therefore, we select the SVM with C = 1 and σ = 0.0371

for the remainder of the work.

3.4.3 Neural network

Tuning

We discussed the properties of neural networks in section 2.5.4. The R nnet

library simulates feed-forward neural networks with a single hidden layer. [39]

We use the caret train function [5] to tune neural networks over various hyper-

parameter settings and estimate their accuracies using 10-fold cross-validation.

We tune to find optimal values for size (number of nodes in the hidden

layer, affecting complexity of patterns learned) and decay (weight decay pa-

rameter, which influences smoothness of output) on the data set, as detailed in

section 2.5.4. We expect accuracy to rise in response to a certain size increase,

with the weight decay choice leading to an optimum between underfitting and

overfitting. The cross-validated accuracies are plotted in Figure 3.6; they are

tabulated with their standard deviations in Table A.4.

The tuning result is interesting for many reasons. First, the accuracy estimates

are significantly worse than those of SVM and Random Forest models. Second,

there appears to be a much larger variance in accuracy estimates compared to

these models. This variance is reflected in the seemingly multimodal tuning

graphs and the larger standard deviations of the cross-validated estimates. In

contrast to the other models, there does not appear to be a clear optimum for any

combination of parameters. Reasons for this might lie in the influence of random

weight initializations at the start of training, and the presence of local minima in

the numeric optimization process causing failure in some of the models trained

during cross-validation.

58

Neural network tuning results

#Hidden Units

A
cc

ur
ac

y
(C

ro
ss

-V
al

id
at

io
n)

0.74

0.75

0.76

0.77

2 4 6 8 10 12

Weight Decay
0 0.01 0.1

Figure 3.6: Results of neural network tuning for size (number of hidden nodes)

and weight decay. Hyperparameters selected were size = 2 and decay = 0.

Another striking result is that increasing the size of the hidden layer beyond

size = 2 does not seem to significantly improve the accuracy. Apparently, the

neural network method only uses some linear combinations of features, and is

not able to make use of sparse patterns in the data in order to increase accuracy.

The best accuracy appears to lie at size = 2 and decay = 0, although the

difference is small. The result is remarkable: this means that the winning neural

network does not make use of weight decay smoothing. With these parameters,

estimated binary class prediction accuracy lies around 0.778 and DMC accuracy

lies around 0.561, which is significantly lower than the accuracy of Random

Forest and SVM.

Due to the large variance of the estimates, it is hard to select the best

performing model; it might be that many other networks are equivalent in

accuracy and any relative differences are due to chance. In this case, we select

59

the simple 2-node model, according to Occam’s razor: when choosing between

two models with the same generalization error, the simpler model must be

preferred. [3: 4.4.4]

Interpretation diagram

A neural interpretation diagram [20] of the selected model is plotted in Figure 3.7.

This diagram shows the nodes and connections in the neural network. As

discussed, information flows from the input layer (on the left) to a hidden layer

and finally to the output node. Connections having positive weights are shown

in blue; connections having negative weights are colored red. Larger absolute

weights produce a thicker line, meaning that the value on the left has a larger

influence on the right node.

The neural interpretation diagram allows us to derive that the model has

detected two latent ‘factors’ influencing the output. Hidden node H1 has a

negative contribution to the order probability, and hidden node H2 has a pos-

itive contribution. Features weighed heavily are: countTransact, minCCount,

maxCCount, gradCMaxPrice, sdCSumPrice, and address. It is interesting to note

that the list of features with large weights only partly overlaps the set of most

important variables according to Random Forest’s embedded variable importance

metric shown in Figure 3.3.

3.4.4 Model evaluation

In the preceding sections, we presented our tuned Random Forest, SVM, and

neural network classifiers. Before continuing, we summarize and evaluate the

estimated accuracies of these classifier models (see section 2.5.1 for details). If

there are any models with extremely bad accuracy, we can remove them from

further analysis. The remaining models will become part of the meta-classifier.

The cross-validated accuracies of the three models are presented in Table 3.5.

The Random Forest and support vector machine methods appear to give the best

results on the data set, with Random Forest having a slight accuracy edge. The

neural network trails these accuracies by quite a large margin; however, its result

is still better than what would be expected by chance. There is a possibility that

the neural network might still provide some useful information in edge cases,

60

I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15
I16
I17
I18
I19
I20
I21
I22
I23
I24
I25
I26
I27
I28
I29
I30
I31
I32
I33
I34
I35
I36
I37
I38
I39
I40
I41
I42
I43
I44
I45
I46
I47
I48
I49
I50
I51
I52
I53
I54
I55
I56
I57
I58
I59
I60
I61

sessionNo
countTransact

startHour
startWeekday
sumDuration
minCCount
maxCCount
avgCCount

minCMinPrice
avgCMinPrice
maxCMinPrice
sdCMinPrice

gradCMinPrice
rangeCMinPrice
minCMaxPrice
avgCMaxPrice
maxCMaxPrice
sdCMaxPrice

gradCMaxPrice
rangeCMaxPrice
minCSumPrice
avgCSumPrice
maxCSumPrice
sdCSumPrice

gradCSumPrice
rangeCSumPrice

minBCount
avgBCount
maxBCount

minBMinPrice
avgBMinPrice
maxBMinPrice
sdBMinPrice

gradBMinPrice
rangeBMinPrice
minBMaxPrice
avgBMaxPrice
maxBMaxPrice
sdBMaxPrice

gradBMaxPrice
rangeBMaxPrice
minBSumPrice
avgBSumPrice
maxBSumPrice
sdBSumPrice

gradBSumPrice
rangeBSumPrice

minBStep
avgBStep
maxBStep

minOnlineStatus
maxOnlineStatus

minAvailability
avgAvailability
maxAvailability

maxVal
customerScore
accountLifetime

payments
age

address

lastOrder

H1

H2

O1 order

B1 B2

Figure 3.7: Neural interpretation diagram of the final neural network with

two hidden nodes. Positive weights are blue; negative weights are red. Larger

absolute weights have thicker lines.

61

Model Binary accuracy Binary SD DMC accuracy DMC SD Rank

Random Forest 0.898 0.005 0.796 0.011 1

SVM 0.869 0.004 0.738 0.008 2

Neural network 0.778 0.027 0.561 0.052 3

Table 3.5: Cross-validated accuracy estimates of tuned classifiers, standard

deviations of the accuracy estimates, and the estimated rankings of the classifiers.

for instance by classifying correctly some observations that were misclassified by

both Random Forest and SVM classifiers. Therefore, all classifiers are retained in

our meta-classifier.

Because of time constraints, the meta-classifier could not be finished in time

for submitting the results to the DMC competition. Therefore, we have submitted

to the competition the best single classifier selected by cross-validation, which is

the Random Forest classifier.

3.5 Meta-classifier

3.5.1 Overview

As explained in section 2.5.5, the building of a stacking meta-classifier using MLR

and level-1 probabilities comprises a number of steps. We have implemented the

following procedure:

1. Tune base classifiers: Random Forest, SVM and neural network;

2. Use the base classifiers to generate a level-1 data set containing probability

predictions for the training set, using a 10-fold cross-validation procedure

to predict on out-of-sample data;

3. Fit level-1 models for the ‘yes’ and ‘no’ classes, using the actual class in

training data as a response variable;

4. Generate predictions from the stacks by predicting pooled probability

values for each class, and picking the class that has the highest predicted

probability.

62

The last two steps of this procedure were followed two times: once using

ordinary least squares linear regression as a level-1 generalizer, once using SVM

regression instead. There is no available stacking implementation for R; there

is a work-in-progress package called caretEnsemble [40] which purports to

implement stacking, but unfortunately this package was not in a working state

at the time of writing. Therefore the algorithms had to be implemented from

scratch.

3.5.2 SVM probability correction

As discussed, we derive our level-1 data set from class membership probability

estimates predicted by the base classifiers. During checking of intermediate

results, the probability predictions of the base SVM classifier were somewhat

unexpected. All models, except for SVM, predicted the class for an observation

through the following equality:

p̂(yes) < 0.5 ⇔ ĉ = no

p̂(yes) ≥ 0.5 ⇔ ĉ = yes
(3.1)

In other words, the probability boundary between ‘yes’ and ‘no’ classes was

at p̂(yes) = 0.5. This property did not hold for the SVM classifier. The 10 SVM

classifiers trained during the cross-validation prediction procedure instead had

varying boundary values around p̂(yes) = 0.415, the exact boundary depending

on the training fold. This observation is sketched in Table 3.6.

As can be seen, for each fold the probability boundaries of ‘no’ and ‘yes’

predictions are slightly different. The separation value in this case may be due

to an imbalance in classes of our training set (46% ‘yes’, 54% ‘no’).

Standard SVM do not generate probabilities; however probability models can

be added to the SVM. [41] Various approaches have been suggested to calibrate

SVM probabilities, for instance histogram-based techniques. [42] However, no

implementation-related issues seem to be discussed in the documentation of the

kernlab library [38]. Its documentation simply claims that class probabilities

are supported without any discussion of calibration. We assume it uses a proper

probability model, but it remains an open question if kernlab can be configured

to produce fully calibrated probability predictions. Another possibility could be to

try weighting of classes during SVM training to see if this imbalance disappears.

63

Fold max p̂svm(yes) | ĉsvm = no min p̂svm(yes) | ĉsvm = yes pboundary

1 0.41547 0.41773 0.41660

2 0.41704 0.41975 0.41839

3 0.41555 0.41765 0.41660

4 0.41753 0.41821 0.41787

5 0.41570 0.41692 0.41631

6 0.41394 0.41471 0.41432

7 0.41584 0.41728 0.41656

8 0.41511 0.41702 0.41606

9 0.41464 0.41879 0.41672

10 0.41470 0.41700 0.41585

Table 3.6: Ranges of observed predicted probabilities for ‘no’ and ‘yes’ classes by

SVM base classifier.

Nevertheless, due to the long computation time of the meta-classifier, re-training

the full stack was not a viable option.

The unbalanced probabilities might pose a problem for the level-1 generalizer.

First, ‘yes’ cases in the training set coincide with lower SVM-predicted proba-

bilities, possibly leading the level-1 model to conclude that the SVM classifier

is less accurate in predicting the ‘yes’ class. Second, due to overlapping ranges

between the various folds, simple combination of the folds will result in some

‘yes’ predictions having a lower associated p̂svm(yes) than other ‘no’ predictions

(for instance, in fold 6 there is a ‘yes’ prediction with p̂(yes) = 0.41471, while

in fold 4, there is a ‘no’ prediction with p̂(yes) = 0.41753). For those reasons,

we perform a quick correction on the p̂(yes) values predicted by the SVM base

classifier.

Therefore, we performed a simple linear scaling operation to the p̂svm(yes)

values to shift the predicted class boundary to a corrected p̂corr (yes) = 0.5:

p̂corr (yes) =

 0.5
pboundary

p̂(yes) if p̂(yes) < pboundary ;

1− 0.5
1−pboundary

(1− p̂(yes)) if p̂(yes) ≥ pboundary .
(3.2)

Here we define pboundary as the mean of the highest observed p̂svm(yes) | ĉsvm =

no and the lowest p̂svm(yes) | ĉsvm = yes on the training fold.

After applying these corrections to the predictions in every fold, the level-1

data set can be composed from all corrected folds.

64

When making predictions from the stack, we must apply the same correction

to the level-0 SVM classifier’s predictions to then use as level-1 features.

3.5.3 Ordinary least squares linear regression

On the level-1 training set in a form described by Table 2.3, we fitted the following

linear model, using the pooled order probability as a response variable and the

base classifier probabilities as predictors:

p̂stack (yes) = β0 + β1p̂rf (yes) + β2p̂corr (yes) + β3p̂nn(yes) + ε (3.3)

We fitted the model for the ‘yes’ class. Using the lm function of R’s built-in

stats package [28], the following coefficients were estimated:

Coefficient Interpretation Estimated value

β0 intercept —0.01165

β1 weight of base RF 0.93749

β2 weight of base SVM 0.08670

β3 weight of base NN 0.00297

Table 3.7: Fitted values for level-1 linear regression model.

The results of the linear model allow for easy interpretation. [43: Ch. 7–8]

The Random Forest base classifier accounts for most of the variation in the

response, with the SVM base classifier acting as a weaker predictor. The neural

network base classifier appears to have almost no influence on the predictions of

the stack.

This finding correlates well with the cross-validated accuracy estimates of the

base classifiers in section 3.4.4. The Random Forest classifier was estimated by

cross-validation to have the highest accuracy, so it follows that it plays a large role

in the stack. The SVM classifier trailed behind slightly in cross-validation, and

indeed its contribution in the linear model largely overlaps that of the Random

Forest, but it is still included in the stack. The neural network was already shown

to perform a lot worse in cross-validation. It was hoped that the neural network

with its vastly different algorithm could still contribute to the accuracy of the

stack in a minor way, but apparently this is not the case.

65

The linear model above was fitted for the ‘yes’ class. As discussed in sec-

tion 2.5.5, the original MLR algorithm specifies that a regression model must be

fitted for every class, in order to pick the class with the highest pooled probability

predicted by its model. Since we have a two-class problem, we expected the

fitting of a model for the ‘no’ class to be unnecessary, and a verification model fit

demonstrated that this assumption was valid, as p̂stack (yes) + p̂stack (no) = 1 for

all observations.

Finally, the base classifier predictions and the linear model predictions were

used to generate predictions on the DMC test set. Base SVM predictions were

corrected using the method described in section 3.5.2.

3.5.4 Support vector regression

As an alternative level-1 regression model, support vector regression was per-

formed using the caret and kernlab libraries [5, 38]. Just as in the previous

section, the pooled order probability is the response variable and the base classi-

fiers’ predicted probabilities are the predictors.

A linear kernel was used. Tuning involved finding the optimal value of

0.25 ≤ C ≤ 1 through 10-fold cross-validation. For a detailed description of the

SVM tuning procedure, review section 3.4.2. The process is largely the same

here; however, the dependent variable is continuous, and the measure to be

optimized is the observed root-mean-square error (RMSE) between actual and

predicted outcomes.

The tuning procedure demonstrated that there was no difference in RMSE

due to changes in C; see Table A.5 for the table of results. Therefore, the default

value of C = 1 was selected for the SVM regression model. As with the linear

model, it was verified that p̂stack (yes) + p̂stack (no) = 1 for all observations, so

no additional model was fitted for the ‘no’ class.

Finally, predictions were created on the DMC test set.

3.5.5 Evaluation issues

Ideally, we would now have performed an internal evaluation of the meta-

classifiers using cross-validation. Unfortunately, due to time constraints this was

not possible.

66

A time-consuming part of constructing the meta-classifier is the cross-validated

train-and-predict loop which generates the level-1 data set (see section 2.5.5).

In this process, all three base classifiers must be trained ten times so they can

each generate predictions on their out-of-sample data.

To obtain 10-fold cross-validated estimates for the full meta-classifier, we

would have to fit ten meta-classifiers, each on a subset of the training data. This

means in total we would need to train 3× 10× 10 = 300 base classifiers, which

might require more than a week of computation time. It was decided to not

pursue this procedure.

An alternative could be to train the meta-classifier on a subset of the training

set only, and keep a held-out set for internal evaluation. However, this has the

risks of penalizing the meta-classifier’s performance through the smaller training

set. It would remain the question if the test accuracy would really be comparable

to the cross-validated accuracy estimates.

This leaves us with empirical evaluation of the meta-classifier on the test

set. The actual classifications for the test set will be provided by DMC after the

competition ends.

3.6 Transformation

In the DMC competition, participants can submit floating point predictions in the

range [0, 1] to signify the predicted probability of an order on a test session. We

have therefore worked with class probabilities throughout our whole analysis

pipeline.

The error function used by DMC to rank submissions is given in Equation 2.1.

We have derived an accuracy measure from this function, the DMC accuracy, for

use in our cross-validation procedures (see Equation 2.2). During these runs, it

already became apparent that the number for cross-validated ‘binary accuracy’

(the default accuracy measure when predicting only binary classes) was always

much higher than the average DMC accuracy.

Therefore, we simulated on a held-out test set how the DMC error would

be influenced if we would submit not a classifier’s order probabilities (predicted

probabilities of ‘yes’ class membership), but just the values 1 or 0 based on the

67

most likely class.

The simulation showed that by just submitting 1 or 0 values, we decreased

the DMC error on our submissions by a large margin. In fact, the DMC accuracy

in this case was equivalent to the binary accuracy. It turns out, when using the

DMC error function, it is much better to just submit binary predictions.

This can be demonstrated with a simple example. Consider a test set of 10

sessions on which we predict a 90% chance of ordering. Let’s assume that in

reality 9 of the 10 test cases led to an order. If we would submit probability

predictions, the DMC error calculation would be as follows:

i 1 2 3 4 5 6 7 8 9 10

orderi 1 1 1 1 1 1 1 1 1 0

predictioni 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

|orderi − predictioni | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9

Table 3.8: DMC error calculation when submitting probabilities. The contribu-

tions to the DMC error |orderi − predictioni | are specified in Equation 2.1.

We can see that even the ‘almost perfect’ 90% order predictions contribute

significantly to the DMC error, yielding a total errDMC = 1.8. Now, if we would

submit only binary predictions, the calculation looks as follows:

i 1 2 3 4 5 6 7 8 9 10

orderi 1 1 1 1 1 1 1 1 1 0

predictioni 1 1 1 1 1 1 1 1 1 1

|orderi − predictioni | 0 0 0 0 0 0 0 0 0 1

Table 3.9: DMC error calculation when submitting binary classes.

Now, most predictions do not contribute to the error, and the DMC error is

only errDMC = 1.0.

In short, every prediction except a 100% confident (and correct) prediction

adds to the error function. There is no incentive to use binning translation

functions, for instance to ‘saturate’ predictions towards their extremes while

retaining the possibility of submitting floating point values for unsure cases.

Submitting any non-integer values will only ensure that every observation will

trigger an error penalty; it is better to just submit binary guesses while taking

68

the occasional penalty in case of a wrong prediction. This was further verified by

simulating various bin sizes.

In conclusion, for the purpose of the DMC competition, it is optimal to submit

binary class predictions only.

3.7 Final prediction

As a last step in the analysis, the various classifiers were executed on the DMC-

provided test set [2]. As discussed, only the Random Forest classifications have

been submitted to the DMC due to time constraints. Meanwhile, work continued

on the meta-classifier.

The test set underwent the process sketched in Figure 2.2. First, features were

extracted; then, missing values were imputed using unique-value imputation.

Predictions were extracted from the tuned Random Forest, SVM and neural

network base classifiers. These predictions were used as a test set for the stacked

meta-classifier, which generated further predictions using linear model as well

as linear support vector regression.

Classifier RF SVM NN stack LM stack SVM

RF 1.000 0.924 0.784 0.996 0.990

SVM 0.924 1.000 0.789 0.928 0.935

NN 0.784 0.789 1.000 0.786 0.788

stack LM 0.996 0.928 0.786 1.000 0.994

stack SVM 0.990 0.935 0.788 0.994 1.000

Table 3.10: Prediction agreement between the various classifiers on the DMC

test set. A value of 1 means the classifiers produced the exact same predictions

on the test set.

To gather some ideas about the behavior of the stacking classifiers which we

were not able to cross-validate, we created an agreement table in Table 3.10.

The table shows that the stacked predictions do not diverge much from the

predictions of Random Forest, which was selected as the best base classifier

by cross-validation. The linear model stack differs on even less than 0.5% of

the predictions, and the SVM stack changes just around 1% of the predictions.

Possibly this represents a positive change, but this can only be evaluated using

69

actual order outcomes from the DMC test data.

3.8 DMC evaluation

On July 4th, the DMC organization released the actual outcomes of the test set

on their website. [1] This allowed us to determine the real-world performance

of all classifiers by comparing the predicted classes to the actual test outcomes.

The results are presented in Table 3.11. Confusion matrices for all classifiers are

given in Table 3.12.

Model CV accuracy CV SD Real accuracy errDMC Rank

Random Forest 0.898 0.005 0.903 496 1

Support vector machine 0.869 0.004 0.868 676 4

Neural network 0.778 0.027 0.755 1250 5

Stack LM — — 0.903 498 3

Stack SVM — — 0.903 496 2

Table 3.11: Cross-validated accuracy estimates of all classifiers on the training

set, standard deviations of the cross-validated accuracy estimates, real accuracies

on the DMC test set, and real DMC errors (see Equation 2.1) of the classifiers

on the DMC test set. For classifiers submitting only binary predictions, the DMC

error is the total number of errors on 5111 test observations.

It turns out that the stacking classifiers do not perform any better than

the Random Forest. The SVM stack and the Random Forest have the same

accuracy. If accuracy of classifiers is comparable, the most simple model must be

preferred. [3: 4.4.4] Therefore, of our classifiers, Random Forest ranks first; the

SVM stack follows, with the linear model stack following closely. As expected

from cross-validation, the SVM classifier is somewhat less accurate, and finally

the worst performing classifier is the neural network.

The cross-validated accuracy estimates are very similar to the real accuracies

on the DMC test set, with the actual accuracies all falling within the cross-

validated estimates plus/minus a single standard deviation. This shows that

the cross-validated errors (and also Random Forest out-of-bag errors) are good

estimates of the test error.

70

This concludes the presentation of our results. In the next chapter, we

will interpret the results and review them in light of other work done on this

prediction problem.

Random Forest actual no actual yes

no predicted 2502 212

yes predicted 284 2113

Support vector machine actual no actual yes

no predicted 2350 240

yes predicted 436 2085

Neural network actual no actual yes

no predicted 1835 299

yes predicted 951 2026

Stack LM actual no actual yes

no predicted 2496 208

yes predicted 290 2117

Stack SVM actual no actual yes

no predicted 2485 195

yes predicted 301 2130

Table 3.12: Confusion matrices of predicted versus actual order outcomes on the

DMC test set.

71

Chapter 4

Discussion

4.1 Principal findings

The main problem of the DMC competition is to predict the probability that a

web-shop visitor places an order, based on the transaction data given. As shown

in section 3.8, the highest test accuracy of our classifiers was obtained by a

Random Forest classifier having a test accuracy of 90.3%. This appears be a

reasonable accuracy for practical purposes. To fully judge its merits however, it

must be compared with the results of other teams; we will review our methods

and results against those of the competition winner.

An important sub-question was which approach to use for dealing with the

many missing values in the DMC data. As our results demonstrate (see Table 3.3),

for this problem there is no significant difference between the methods. We find

support for our intuition that in problems of pure prediction (not interpretation or

calculation), extensive manipulation of the missing values does not give a more

powerful result. Apparently imputation adds no information that a good classifier

cannot itself derive from the remaining, present, variables. This implies that a

simple imputation method, such as mean imputation or unique-value imputation,

can be used safely in prediction problems. For a generic data mining problem,

predictive imputation might be advantageous, but it requires computation time

which in the case of pure prediction might be better spent elsewhere.

As a prediction model, Random Forest performed very well. Not only did

it turn out to have the best cross-validated accuracy of our classifiers, it was

also shown to have the best empirical test accuracy (90.3%, see Table 3.11).

Besides ranking first of all our classifiers, it also has many other desirable

72

properties. First, the computational effort of training is relatively low when

compared to SVM. Second, Random Forest only has one hyperparameter (mtry)

to be defined externally, and its accuracy appears not even highly sensitive to

the parameter, which confirms the author’s assertions. [10] This means that if

time is lacking, tuning might even be completely skipped and a Random Forest

can just be trained with the default mtry setting used by the R randomForest

package. Third, Random Forest’s internal out-of-bag error estimate is validated

as a quickly determined proxy for cross-validated error estimates. Thus, we can

tune a Random Forest by simply training a small number of Random Forests

with different values of mtry and comparing their out-of-bag errors. This fully

relieves us from the computational expense of cross-validation, which (in the

case of 10-fold cross-validation) would require us to train 10 classifiers for each

hyperparameter setting. Finally, the ensemble architecture of a Random Forest

allows for good class membership probability estimates, by averaging predictions

over all trees. These properties make Random Forest very fast and useful for

practical prediction, and we recommend Random Forest as a first try for a new

problem.

The SVM classifier also performed with good accuracy (86.8% accuracy, see

Table 3.11). However, it is associated with large practical drawbacks. First, its

training times are much slower than Random Forest on large data sets. This

problem is compounded by the requirement for cross-validation in order to

estimate the test error, and even more by the larger number of hyperparameters

to be selected and tuned (the kernel function, the kernel’s parameters, and the

cost parameter C). Tuning therefore requires us to cross-validate an already large

number of SVMs. Taking into account all the added computation effort, Random

Forest can produce comparable (or better) results in a fraction of the time. Of

course, it would be advisable to always create an additional SVM classifier, in

order to validate that Random Forest’s accuracy is competitive on a particular

data set, but this might be done in parallel with other analysis steps.

The neural network has an unacceptably low accuracy for this problem. This

might be expected due to the simple network topology with a single hidden layer.

Perhaps, more complex neural networks would have been able to model the

patterns in the training data more adequately. In an attempt to explain the poor

73

performance of the model in relation to network topology, we have attempted

to train more elaborate models, such as a multi-layer perceptron using the

RSNNS library [44], but these training attempts did not converge and resulted

in networks with accuracies comparable to random guessing. This is likely due

to the large number of hyperparameters that must be selected correctly. We

conclude that neural networks have theoretical significance, but their behavior is

fragile and their utility in practical prediction seems limited when compared to

more modern alternatives.

Unfortunately, the stacking meta-classifier does not yield any improvements

in test accuracy for our problem. This is true for the standard linear model stack

as described by its author, [24] but also for the SVM stack as used for instance in

the MetaFraud framework [27]. It is likely that stacked generalization would

have worked better on other data sets. We used the same architecture as Ting and

Witten [25] with three base classifiers, a probability-based level-1 data set, and

multi-response linear regression (MLR). In their empirical evaluation of stacking,

they obtained higher test accuracies relative to selecting the best base classifier

by cross-validation on many data sets. Even recently, a stacking approach was

very successful as it reached the second place of the Netflix competition. [45]

For our problem, an advantage of stacking was not realized.

The disappointing performance of the stack might have been due to the fact

that stacking produces a weighted combination of base classifiers for every class

(review Equation 3.3), for instance, giving more weight to base classifier 1 for

class ci, but more weight to base classifier 2 for class cj . But, in a two-class

problem, after the weightings for a single class are determined, there are no

degrees of freedom left. In this case, it might not be surprising that the stack just

largely followed the predictions made by the best base classifier with marginal

changes. There are extensions to stacking, such as the use of entropy-based

level-1 attributes and multi-response model trees, which have shown to give

better results than normal stacking in many cases. [23] However, it is hard to say

if advantages will be realized in this particular type of problem with few classes,

few base classifiers, and a clear ‘best’ base classifier. We suspect that stacking

may produce better results in multi-class problems or when using more base

classifiers.

74

Due to the lack of an available R library, implementing the stacking algo-

rithm took a comparatively long time. The level-1 training set generation is

also computationally very expensive, which makes cross-validation of the stack

intractable (see section 3.5.5). This makes stacking unattractive for this type of

problem.

We chose to use only open-source software for the analysis. This turned out

to be viable. R was demonstrated to be a powerful environment for data analysis.

Its code-oriented nature enables external validation and reproduction of methods

and results. Important drawbacks of R are the lack of parallelism and the lack

of standardization in third-party libraries, as explained in section 3.1. Both

drawbacks can be mitigated to a large degree by using the right combination of

packages. It turns out that the caret package [5], when used with the foreach [31]

and doMC [32] packages, is a highly valuable tool to cross-validate and tune

prediction models in a parallel fashion. It also provides a standardized interface

for many modern prediction algorithms. There are various other packages

implementing models, some of which are redundant. When searching for a

prediction algorithm in R, it is recommended to first check whether it is offered

by the caret package.

For general non-statistical programming tasks, such as text file processing,

data acquisition and data conversion, the R language with its long pedigree and

sometimes arcane syntax is less appropriate. Languages such as Perl, Python and

PHP are more current in regards to object oriented programming, text processing,

input/output facilities, error handling, documentation and examples, et cetera.

4.2 Context

In the competition’s results, our Random Forest classifier (with an errDMC of

496) ranked 27th out of 63 competitors (see Table A.6 for the full ranking). Our

result is modestly better than the median errDMC of 607. The best submission

had an errDMC of 144 (97.2% accuracy) and the lowest ranking submission

which is not an outlier had an errDMC of 2772 (45.8% accuracy). The absolute

worst valid submission had an errDMC of 4970.22 out of 5111 observations

(2.75% accuracy), which looks rather tragic, as it seems to be a case of switched

75

yes/no labels — if the team would have submitted the complements of their

predictions, they would have won the competition with an errDMC of 140.78

(97.25% accuracy).

After the competition, we have discussed approaches with the winning team

of the Technische Universität Dortmund. Interestingly, there are many similarities

in approach. We summarize the techniques and their differences in Table 4.1.

Aspect Our method Winning method

Feature extraction 62 features, aggregated using count,

sum, average, max, min, range,

standard deviation, gradient; ex-

clude customerId

160 features, aggregated using min,

max, mean, standard deviation, last

non-missing value, difference be-

tween two last non-missing values

Imputation unique-value imputation with –1 as

imputed value

unique-value imputation with

2 × max(xi) as imputed value

Prediction stack of Random Forest, SVM, and

neural network

bagging of 600 C4.5 decision trees

Transformation predict binary class only predict binary class only

Table 4.1: Comparison of data mining approaches.

The winning team used bagging to create an ensemble of 600 C4.5 decision

trees. This can be seen as manually creating a Random Forest-like classifier

without de-correlation of trees (see section 2.5.2).

Our best performing prediction models (Random Forest, SVM, and the stack)

produced test accuracies falling roughly in the same range (around 90%, see

Table 3.11). This leads us to the conjecture that implementing another prediction

model, such as bagging C4.5 decision trees, might not bring huge accuracy im-

provements to our data set, especially since the 600 C4.5 decision tree ensemble

and Random Forest are already very similar.

Instead, we speculate that the difference in accuracies is largely due to a

difference in feature extraction. For instance, we did not use a ‘most recent

value’ aggregation, which could have been very informative: for instance the

last product prices viewed, or the most recent step in the order process. We also

ignored the identificator variable customerId as we thought it might produce

overly optimistic error estimates as its information would not generalize to new

customers, but we did not explore if extracting a customerId feature might

have been beneficial in reducing DMC error (for instance, if customers overlap

76

between training and test set).

Feature extraction seems to be at least partly a creative process. At various

moments in time, we have added new features or data aggregation operations

after exploring some part of the training data. Therefore, as the experience with

a data set grows, the full data mining pipeline should be amenable to adding

new features and re-doing the steps after feature extraction. R’s procedural

programming nature makes it relatively easy to re-trace steps on new data.

Unfortunately, some of our analysis components, such as the SVM and stacking

classifiers, required a training time measured in days, which made it impractical

to experiment with new features and iterate.

In many situations, the analyst could ‘prototype’ a model on a subset of the

training data to speed up the process, but in a competition setting where every

bit of accuracy matters, it is preferable to work with the full data set as much as

possible, in order to prevent making decisions on biased subset estimates.

This underscores the importance of a classifier such as Random Forest that

can be tuned quickly, and that provides internal test error estimates to prevent

the need for expensive cross-validation.

While for practical use of the order prediction models, predicting the order

probability might be useful, the DMC error function was minimized by only

predicting binary classes. This shows that if a prediction problem is given, it

pays off to check the behavior of the error function carefully and possibly adjust

predictions.

4.3 Interpretation

We have created multiple prediction models that successfully predict the proba-

bility of an order. It can be informative to explore which predictors play a large

role in prediction.

A drawback of Random Forest and SVM classifiers is the lack of interpretability

of their resulting models, which consist of large amounts of structured data (for

Random Forest, a large number of decision trees; for SVM, a set of support

vectors in 62-dimensional feature space). To explore the structure of the decision

problem, it is easier to use a singular decision tree. We refer to the decision

77

trees we have trained in Figure 3.1, in particular, the decision tree trained on

unique-value-imputed data denoted with (c). A description of DMC transaction

variables is given in Table 2.1, from which we have extended session features as

described in section 3.2.

All decision trees agree that maxBStep is the most informative feature. This

feature represents the maximum step reached in the order process by the visitor.

The ordered levels are not described in the DMC set, but we can assume that

they consist of steps such as: product selection, address entry, confirmation, et

cetera. Visitors not reaching a high order step in the session are not likely to

place an order. The feature avgBStep (average step in order process over all

transactions) at the bottom of tree (c) plays a similar role.

Features such as avgBCount (average number of products in the shopping

basket), sumDuration (the total time that the visitor spent on the web-shop), and

countTransact (number of transactions by the visitor) work in a similar fashion. If

a visitor adds many products to their shopping basket, or if they use the web-shop

for a long time, they are more likely to place an order.

Some customer-related attributes also appear to have predictive value. For

instance, from tree (c) we find that customer age matters, with customers of 19

years and younger not likely to place an order. Note that in the unique-value

imputation tree, customers with no known age have been imputed with the value

–1 and thus also are viewed as less likely to order. In the two other trees, these

customers are lumped together with customers of average age, and this may

explain why the feature age does not appear in those trees.

Another customer-related attribute is the feature payments, which is used in

trees (a) and (b) in place of age. This feature denotes the number of payments

made earlier by the customer. Interestingly, a lower number of payments gives

rise to a higher order probability.

These features were apparently rated as important by the decision tree

algorithms. We can relate these to the variable importance measures generated

by Random Forest in Figure 3.3. Indeed, we find that many features used in

the decision trees, such as maxBStep, avgBStep, and countTransact, are rated as

high-importance in the Random Forest. Other features are less prominent.

Some features ranked as important by Random Forest, but not by the decision

78

tree algorithm, are maxAvailability (or the maximum level of availability for the

products viewed, based on the ordered categorical ‘availability’ variable which

ranges from ‘no products in stock’ to ‘all products in stock’) and address (which

distinguishes between companies, male and female customers).

While decision trees are less stable and accurate than Random Forests, they

are of great importance in exploring the structure of a decision problem. When

feature space is of low dimension, prediction contour plots such as Figure 2.7

are highly useful, but in our case with 62 features, interpretability by plotting is

low. Therefore we recommend to train and plot a decision tree at the start of a

prediction problem, for the purpose of exploring relationships of features with

the outcome.

4.4 Limitations

In the former section, we have derived from decision trees and Random For-

est some important features and structure of the prediction problem. A valid

question may be if these predictors really give us any new insight on the data.

Among the most important features are maxBStep (maximum step in the

order process reached), avgBCount (average number of products held in basket),

countTransact (number of transactions), sumDuration (total on-line time), and

maxAvailability (maximum availability of the products viewed). But the signifi-

cance of these features could be seen as somewhat trivial — It is only expected

that a visitor who spends a long time on a web-shop, views many pages, or

selects to put many products in their shopping basket, is more likely to order in

that session. However, this information is only available when the visitor has

spent a lot of time in the web-shop, or when the session has concluded.

So, most of the important predictors that help a classifier perform well in

this DMC task, actually do not give us much information in assessing the order

probability of a new visitor and customizing the web-shop experience for them

in time. In a way, the problem suffers from its definition: competitors are asked

to predict a property of a session, which is largely influenced by predictors

which are only fully available after that session has concluded. The practical

relevance of the high prediction accuracies seen in the competition is therefore

79

questionable.

DMC task 2, the on-line prediction task (review section 1.2), might produce

classifiers that bring wider insights. In this task, agents must make stream-based

predictions of transactions that arrive in real-time. Thus, an agent must generate

a prediction after every transaction, based on the growing body of information

about the current session that is constantly amended by new transactions. In

this task, a classifier that only makes accurate predictions using late-generated

information (such as the maximum order step) would have a higher error than a

classifier that also predicts well using only a priori information.

That is not to say that the classifiers created in DMC task 1 are worthless in

a real-life situation. If we were to use a classifier to predict order outcomes at

the start of a session before transactions take place, we might simply consider

all dynamic session-based features as missing values, or create a separate model

trained only on a feature subspace containing only customer-based features such

as age, plus globally available information such as weekday, hour, et cetera. For

instance, if we train a Random Forest using only customer information, weekday

and hour, we get an estimated accuracy of 69.2%. This means the classifier still

has some predictive ability, even if the major ‘trivial’ features such as a visitor’s

ordering step are not available.

4.5 Future work

As the competition demonstrates, there is definitely room for improvement

to our best classifier, for instance through improved feature extraction. As

discussed, feature extraction is to some extent a creative process, but there is

also considerable theory and a large body of continuously evolving practices

attached to it. The effort in our work was mostly focused at creating better

imputation and prediction models; it is therefore an important realization that

ultimately a highly simple imputation method and a popular prediction algorithm,

namely unique-value imputation and a Random Forest with standard parameters,

performed very well at their respective tasks – while more improvements would

likely have been realized by focusing on improving feature extraction. For

future studies, it would therefore be beneficial to perform a systematic review of

80

applicable feature extraction techniques early in the process. Review works such

as Guyon and Elisseeff [46] may provide necessary guidance as to which types

of techniques would work well in a certain situation.

While we conclude that the choice of various imputation techniques did not

affect the accuracy of our classifiers, it might be possible to improve accuracy

by a ‘reduced model’ technique suggested by Saar-Tsechansky and Provost [4].

The technique, which is not widely used today, depends on training multiple

‘reduced models’ which include only a subset of the features. When encountering

a test observation having missing values, it is predicted using the model that

fits the known variables for that observation. The general idea is that a model’s

internal structure and optimal hyperparameters associated with the full feature

space, might not be optimal for prediction on a subspace of the feature space.

The authors demonstrate empirically that the reduced model technique produces

a lower bias than either simple or advanced imputation techniques on many

data sets. Naturally, fitting many models increases training time, although this

can be mitigated by using a fast classifier such as Random Forest. There are

also compromises possible in order to decrease computation time, for example,

create only reduced models having missing value sets occurring heavily in the

data set, and use simple (mean/unique-value) imputation techniques for other

observations.

It would also be interesting to make a detailed comparison between Random

Forest and the bagged decision tree classifier as used by the winning team in

the DMC competition, perhaps on other data sets. Due to the similarity of

classifier structure, we might expect both classifiers to have similar accuracies,

but it remains an open question if the winner’s bagging classifier without de-

correlation might bring accuracy improvements over Random Forest in certain

cases.

In conclusion, the obtained accuracy by our methods seems reasonable and

lies above the median result of the competition. However, by restricting the

prediction model to the Random Forest classifier or a similar model, expanding

feature extraction, and implementing a reduced model technique, it is possible

that significant accuracy improvements could be obtained.

81

Chapter 5

Conclusions

After tuning three base classifiers on the DMC training set, we find that the

Random Forest classifier has the lowest test error, with a 90.3% accuracy on the

DMC test set. The support vector machine classifier reached 86.8% accuracy.

The neural network performed worst with 75.5% accuracy. Random Forest and

SVM can both be recommended as general purpose classifiers. However, the

Random Forest method was shown to have many desirable properties, such

as relatively fast training and a low number of external model parameters to

be defined. Its internal out-of-bag error estimates are highly useful for time-

limited prediction problems such as competitions, since they allow for test error

estimation without long cross-validation computations. Therefore we highly

recommend Random Forest as a ‘gold standard’ to use as a first step on a new

prediction problem. We recommend to also train and plot decision trees for

exploration and interpretation of a prediction problem.

In the DMC competition, our best classifier ranked 27th out of 63 competitors.

The test accuracy obtained by the competition winner was 97.2%. This demon-

strates that order prediction from web-shop transaction logs is possible with high

reliability. However, the high accuracies in the competition were only achieved

by using transaction features available after the user session has concluded. This

limits the practical relevance of the high accuracies for predicting the behavior of

a new visitor. Still, we show that there is predictive power in that situation, for

instance by using features derived from a customer database, such as customer

age, number of earlier payments by the customer, et cetera.

In case the analysis depends on a choice in preprocessing (such as the choice

of imputation approach), error estimates and decision tree plots should be used

82

to verify if prediction model accuracy and structure is sensitive to this choice.

When handling missing data, we found no empirical differences in classifier

accuracy for various imputation methods such as mean imputation, predictive

imputation using boosted regression trees, or an uncommon technique called

unique-value imputation. This demonstrates that a simple and fast imputation

technique, such as unique-value imputation, is acceptable for use in prediction

problems. In a prediction setting, there appears to be no value in predictive

imputation.

We have implemented a meta-classifier using stacked generalization that

combines the results of Random Forest, SVM and neural network classifiers.

We found empirically that, on the DMC problem, the stacking classifier did not

perform better than Random Forest. We trained stacking classifiers using ordinary

least squares linear regression and support vector regression with similar results.

The changes in predictions relative to Random Forest were minimal and did

not increase accuracy. A practical disadvantage of stacking is the very long

computation time associated with generating the stack’s training set, as this

generation is based on cross-validation. This makes the data analysis process

less agile and complicates creative iteration on earlier process steps. It also

makes cross-validation of the full stacking classifier impractical, as it would take

computation time equivalent to 300 base model training times. The lack of a

practical test error estimate brings considerable uncertainty. There are extensions

to stacking, but it is unsure if the possible benefits would be worth the cost.

Therefore, we do not recommend the use of stacking in future problems similar

to this study, although in other situations it can be a useful technique.

We successfully built all classifiers using the open source package R as a

statistical environment. The growing popularity of R in data mining circles is def-

initely justified. Most modern prediction algorithms are available as R packages.

R allows for easy code sharing and reuse, which improves reproducibility of

research. The caret package is one of the most important packages for predictive

modeling, as it provides a standardized interface for many prediction models,

and allows for fast model tuning on multi-processor systems. For non-statistical

programming tasks, such as text processing and data preparation, we recom-

mend using a more modern general-purpose scripting language, such as Perl,

83

Python or PHP. We conclude that the R environment, in conjunction with the

caret package and a scripting language for input processing, constitutes a very

useful platform for data mining and predictive modeling in particular.

84

Bibliography

[1] prudsys Data Mining Cup Competition 2013. http://www.data-mining-cup.

de/en/dmc-competition/, 2013.

[2] Competition Task, prudsys Data Mining Cup Competition 2013. http:

//www.data-mining-cup.de/en/dmc-competition/task/, 2013.

[3] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining. Addison-Wesley Longman, Boston, USA, 1st edition, 2005.

[4] Maytal Saar-Tsechansky and Foster J. Provost. Handling missing values

when applying classification models. Journal of Machine Learning Research,

8:1623–1657, 2007.

[5] Max Kuhn. Building predictive models in R using the caret package. Journal

of Statistical Software, 28(5):1–26, 11 2008.

[6] Bradley Efron and Robert Tibshirani. Improvements on cross-validation:

the 632+ bootstrap method. Journal of the American Statistical Association,

92(438):548–560, 1997.

[7] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The Elements of

Statistical Learning. New York: Springer-Verlag, 2nd edition, 2009.

[8] Brian Ripley. tree: Classification and regression trees, 2012. R package

version 1.0-33.

[9] R.A. Fisher. The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7(2):179–188, 1936.

[10] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[11] Andy Liaw and Matthew Wiener. Classification and regression by random-

Forest. R News, 2(3):18–22, 2002.

85

http://www.data-mining-cup.de/en/dmc-competition/
http://www.data-mining-cup.de/en/dmc-competition/
http://www.data-mining-cup.de/en/dmc-competition/task/
http://www.data-mining-cup.de/en/dmc-competition/task/

[12] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn.

Bias in random forest variable importance measures: Illustrations, sources

and a solution. BMC Bioinformatics, 8(1):25, 2007.

[13] Mark R. Segal. Machine learning benchmarks and random forest regres-

sion. http://www.epibiostat.ucsf.edu/biostat/cbmb/publications/bench.rf.

regn.pdf, 2003.

[14] Alexandros Karatzoglou, David Meyer, and Kurt Hornik. Support vector

machines in R. Journal of Statistical Software, 15(9):1–28, 4 2006.

[15] David Meyer. Support vector machines; the interface to libsvm in package

e1071. http://stuff.mit.edu/afs/athena.mit.edu/software/r/current/arch/

i386 ubuntu1104/lib/R/library/e1071/doc/svmdoc.pdf, 2012.

[16] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-

troduction to Information Retrieval. Cambridge University Press, New York,

NY, USA, 2008.

[17] Asa Ben-Hur and Jason Weston. A users guide to support vector machines.

In Data mining techniques for the life sciences, pages 223–239. Springer,

2010.

[18] Qun Chang, Qingcai Chen, and Xiaolong Wang. Scaling Gaussian RBF

kernel width to improve SVM classification. In Neural Networks and Brain,

2005. ICNN&B’05. International Conference on, volume 1, pages 19–22.

IEEE, 2005.

[19] Chrislb, Wikipedia. Diagram of an artificial neuron. https://upload.

wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel english.

png, 2005. This file is licensed under the Creative Commons Attribution-

Share Alike 3.0 Unported license.

[20] Marcus W. Beck. Visualizing neural networks from the

nnet package. R-bloggers, http://www.r-bloggers.com/

visualizing-neural-networks-from-the-nnet-package/, 2013.

[21] R. Callan. The Essence of Neural Networks. The Essence of Computing

Series. Prentice Hall Europe, 1999.

86

http://www.epibiostat.ucsf.edu/biostat/cbmb/publications/bench.rf.regn.pdf
http://www.epibiostat.ucsf.edu/biostat/cbmb/publications/bench.rf.regn.pdf
http://stuff.mit.edu/afs/athena.mit.edu/software/r/current/arch/i386_ubuntu1104/lib/R/library/e1071/doc/svmdoc.pdf
http://stuff.mit.edu/afs/athena.mit.edu/software/r/current/arch/i386_ubuntu1104/lib/R/library/e1071/doc/svmdoc.pdf
https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png
https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png
https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png
http://www.r-bloggers.com/visualizing-neural-networks-from-the-nnet-package/
http://www.r-bloggers.com/visualizing-neural-networks-from-the-nnet-package/

[22] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and

the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[23] Saso Džeroski and Bernard Ženko. Is combining classifiers with stacking

better than selecting the best one? Machine learning, 54(3):255–273,

2004.

[24] David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259,

1992.

[25] Kai Ming Ting and Ian H Witten. Issues in stacked generalization. Journal

of Artificial Intelligence Research, 10:271–289, 1999.

[26] Sam Reid and Greg Grudic. Regularized linear models in stacked general-

ization. In Multiple Classifier Systems, pages 112–121. Springer, 2009.

[27] Ahmed Abbasi, Conan Albrecht, Anthony Vance, and James Hansen.

MetaFraud: a meta-learning framework for detecting financial fraud. MIS

Quarterly, 36(4):1293–1327, 2012.

[28] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2012.

[29] Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for

open computer programs. Nature, 482(7386):485–488, February 2012.

[30] Jon Hill, Matthew Hambley, Thorsten Forster, Muriel Mewissen, Terence

Sloan, Florian Scharinger, Arthur Trew, and Peter Ghazal. SPRINT: a new

parallel framework for R. BMC Bioinformatics, 9(1):558, 2008.

[31] Revolution Analytics. foreach: Foreach looping construct for R, 2012. R

package version 1.4.0.

[32] Revolution Analytics. doMC: Foreach parallel adaptor for the multicore

package, 2013. R package version 1.3.0.

[33] PHP: Hypertext Preprocessor. http://www.php.net/, 2013.

[34] Jeffrey Wong. imputation, 2013. R package version 2.0.1.

87

http://www.php.net/

[35] Murat Sariyar, Andreas Borg, and Klaus Pommerening. Missing values in

deduplication of electronic patient data. Journal of the American Medical

Informatics Association, 19(e1), 2012.

[36] Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams,

Chris Keefer, Allan Engelhardt, and Tony Cooper. caret: Classification and

Regression Training, 2013. R package version 5.15-61.

[37] Andreas Alfons. cvTools: Cross-validation tools for regression models, 2012.

R package version 0.3.2.

[38] Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis.

kernlab – an S4 package for kernel methods in R. Journal of Statistical

Software, 11(9):1–20, 2004.

[39] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,

New York, USA, 4th edition, 2002.

[40] Zach Mayer. caretEnsemble: Framework for combining caret models into

ensembles. https://github.com/zachmayer/caretEnsemble, 2013.

[41] John Platt et al. Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. Advances in large margin

classifiers, 10(3):61–74, 1999.

[42] Joseph Drish. Obtaining calibrated probability estimates from support

vector machines. 1998.

[43] Brian S. Everitt and Graham Dunn. Applied multivariate data analysis.

Arnold, London, UK, 2nd edition, 2001.

[44] Christoph Bergmeir and José M. Beńıtez. Neural networks in R using the

Stuttgart neural network simulator: RSNNS. Journal of Statistical Software,

46(7):1–26, 2012.

[45] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted

linear stacking. arXiv preprint arXiv:0911.0460, 2009.

[46] Isabelle Guyon and André Elisseeff. Feature extraction: foundations and

applications, volume 207. Springer, 2006.

88

https://github.com/zachmayer/caretEnsemble

Appendix

A.1 Random Forest tuning table

mtry Binary accuracy DMC accuracy SD Binary accuracy SD DMC accuracy

2 0.883 0.766 0.005 0.010

10 0.896 0.792 0.005 0.010

19 0.898 0.795 0.005 0.010

28 0.898 0.796 0.005 0.011

36 0.898 0.795 0.005 0.011

45 0.897 0.794 0.006 0.011

54 0.897 0.794 0.005 0.011

63 0.897 0.793 0.005 0.010

Table A.1: Detailed results of tuning Random Forest to optimize accuracy us-

ing cross-validation. The best estimated binary and DMC accuracies are both

provided by mtry = 28.

89

A.2 Bootstrapped SVM tuning table

C σ Binary accuracy DMC accuracy SD Binary accuracy SD DMC accuracy

0.25 0.01 0.853 0.707 0.002 0.004

0.25 0.1 0.856 0.711 0.002 0.004

0.25 1 0.734 0.484 0.003 0.006

0.25 10 0.613 0.265 0.006 0.009

0.5 0.01 0.855 0.711 0.002 0.005

0.5 0.1 0.861 0.721 0.002 0.004

0.5 1 0.762 0.536 0.003 0.005

0.5 10 0.633 0.300 0.004 0.006

1 0.01 0.858 0.716 0.002 0.004

1 0.1 0.863 0.726 0.002 0.004

1 1 0.776 0.561 0.003 0.006

1 10 0.641 0.315 0.004 0.005

2 0.01 0.861 0.723 0.002 0.005

2 0.1 0.863 0.725 0.002 0.004

2 1 0.778 0.564 0.003 0.006

2 10 0.645 0.320 0.004 0.005

Table A.2: Detailed results of first SVM tuning attempt using 25-repeated boot-

strap. Hyperparameters selected were C = 1 and σ = 0.1.

A.3 Sigma-optimized SVM tuning table

C Binary accuracy DMC accuracy SD Binary accuracy SD DMC accuracy

0.25 0.855 0.710 0.004 0.008

0.5 0.863 0.726 0.004 0.007

1 0.869 0.738 0.004 0.008

Table A.3: Detailed results of second SVM tuning attempt using 10-fold cross-

validation and σ held constant at σ = 0.0371. Hyperparameter selected was

C = 1.

90

A.4 Neural network tuning table

size decay Binary accuracy DMC accuracy SD Binary accuracy SD DMC accuracy

1 0 0.769 0.546 0.023 0.044

1 0.01 0.741 0.493 0.035 0.066

1 0.1 0.757 0.522 0.030 0.056

2 0 0.778 0.561 0.027 0.052

2 0.01 0.765 0.535 0.025 0.050

2 0.1 0.761 0.525 0.023 0.049

3 0 0.763 0.527 0.017 0.035

3 0.01 0.762 0.525 0.014 0.029

3 0.1 0.772 0.546 0.012 0.027

4 0 0.768 0.537 0.016 0.032

4 0.01 0.767 0.532 0.017 0.036

4 0.1 0.765 0.532 0.013 0.029

5 0 0.766 0.536 0.016 0.032

5 0.01 0.764 0.530 0.021 0.040

5 0.1 0.758 0.517 0.022 0.046

6 0 0.773 0.547 0.014 0.031

6 0.01 0.760 0.524 0.016 0.029

6 0.1 0.770 0.543 0.016 0.034

7 0 0.769 0.540 0.023 0.047

7 0.01 0.761 0.522 0.017 0.034

7 0.1 0.760 0.519 0.018 0.041

8 0 0.765 0.533 0.021 0.046

8 0.01 0.766 0.534 0.018 0.037

8 0.1 0.764 0.531 0.015 0.030

10 0 0.760 0.522 0.013 0.026

10 0.01 0.761 0.524 0.021 0.043

10 0.1 0.763 0.527 0.018 0.038

12 0 0.770 0.542 0.021 0.042

12 0.01 0.770 0.544 0.016 0.030

12 0.1 0.772 0.546 0.014 0.028

Table A.4: Detailed results of neural network tuning for size (number of hidden

nodes) and weight decay. Standard deviations are relatively large. Hyperparam-

eters selected are size = 2 and decay = 0.

91

A.5 Linear SVM meta-classifier tuning table

C RMSE R2 SD RMSE SD R2

0.25 0.282 0.688 0.005 0.010

0.5 0.282 0.688 0.005 0.010

1 0.282 0.688 0.005 0.010

Table A.5: Detailed results of linear SVM meta-classifier tuning using 10-fold

cross-validation. As the table shows, the accuracy does not depend on the choice

of C.

92

A.6 Team rankings of DMC competition

Rank Team errDMC Rank Team errDMC

1 TU Dortmund 2 144.00 33 FH Frankfurt 1 667.00

2 TU Dortmund 1 145.00 34 THS Mittelhessen 2 703.00

3 Inst Karlsruhe 1 146.00 35 THS Mittelhessen 1 752.00

4 Inst Karlsruhe 2 150.05 36 HS Hannov er 1 792.50

5 Uni Iowa State 1 154.00 37 HS Mittweida 1 814.00

6 Uni Athen EB 1 158.00 38 Uni Hamburg 1 829.26

7 Uni Marburg 1 162.00 39 Uni Cyril Methodius Skopje 1 880.00

8 FZI Karlsruhe 2 165.00 40 Uni Koeln 1 892.00

9 Inst Bandung Technology 2 166.55 41 Uni Paderborn 1 935.00

10 Inst Bandung Technology 1 168.00 42 Uni Jagiellonian 1 1006.00

11 Uni Siberian State Aerospace 1 168.00 43 FH Frankfurt 2 1023.00

12 FZ Desy 1 173.00 44 TU Berlin 1 1069.00

13 TU Amirkabir 1 185.76 45 Uni Southern California 1 1091.62

14 Uni AGH ST 1 192.00 46 Uni Indonesia 1 1275.00

15 Uni Pendidikan 1 200.00 47 Uni Tehran 1 1455.30

16 Uni Budapest TE 1 211.00 48 Uni Tehran 2 1556.60

17 Uni Pernambuco 1 224.12 49 Uni Iran ST 1 1728.00

18 HWR Berlin 1 257.00 50 Uni Shahid Beheshti 1 1797.00

19 Uni Perm Polytechnic 1 285.00 51 Uni Warwick 1 1898.99

20 HS Anhalt 2 289.00 52 Uni Budapest TE 2 1929.00

21 Uni Buenos Aires 1 293.00 53 Uni Cyril Methodius Skopje 2 1980.46

22 FH Brandenburg 1 314.00 54 Uni Sakarya 1 2329.00

23 HS Hannov er 2 359.48 55 Uni Indonesia Education 1 2446.00

24 FZI Karlsruhe 1 425.00 56 Uni California 1 2590.92

25 TU Darmstadt 2 451.00 57 School Walker Governor 1 2615.53

26 TU Darmstadt 1 493.00 58 Uni Indonesia 2 2744.00

27 Uni Ersamus Rotterdam 1 496.00 59 Uni Queens 1 2772.00

28 School Economics Warsaw 1 514.00 60 Uni Aristotle Thessaloniki 1 4970.22

29 School Economics Warsaw 2 522.00 61 Uni Northwestern 1 NA

30 Uni Cairo 1 530.00 62 Uni Perm Polytechnic 2 NA

31 FH Muenster 1 607.00 63 School Walker Governor 2 NA

32 HS Anhalt 1 646.00

Table A.6: Rankings and DMC error values (see Equation 2.1) for all teams in

the competition.

93

